AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Volatolomics in healthcare and its advanced detection technology

Wenwen Hu1,§Weiwei Wu2,§Yingying Jian2,§Hossam Haick3Guangjian Zhang4Yun Qian5( )Miaomiao Yuan6( )Mingshui Yao7,8( )
School of Aerospace Science and Technology, Xidian University, Xi’an 730107, China
Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 730107, China
Faculty of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200002, Israel
Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 310006, China
Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan

§ Wenwen Hu, Weiwei Wu, and Yingying Jian contributed equally to this work.

Show Author Information

Graphical Abstract

This review article introduces the concept of volatolomics and its applications in diagnosis/screening.

Abstract

Various diseases increasingly challenge the health status and life quality of human beings. Volatolome emitted from patients has been considered as a potential family of markers, volatolomics, for diagnosis/screening. There are two fundamental issues of volatolomics in healthcare. On one hand, the solid relationship between the volatolome and specific diseases needs to be clarified and verified. On the other hand, effective methods should be explored for the precise detection of volatolome. Several comprehensive review articles had been published in this field. However, a timely and systematical summary and elaboration is still desired. In this review article, the research methodology of volatolomics in healthcare is critically considered and given out, at first. Then, the sets of volatolome according to specific diseases through different body sources and the analytical instruments for their identifications are systematically summarized. Thirdly, the advanced electronic nose and photonic nose technologies for volatile organic compounds (VOCs) detection are well introduced. The existed obstacles and future perspectives are deeply thought and discussed. This article could give a good guidance to researchers in this interdisciplinary field, not only understanding the cutting-edge detection technologies for doctors (medicinal background), but also making reference to clarify the choice of aimed VOCs during the sensor research for chemists, materials scientists, electronics engineers, etc.

References

1

GBD 2019 diseases and injuries collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. Lancet 2020, 396, 1204–1222.

2

Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2022. CA: Cancer J. Clin. 2022, 72, 7–33.

3

Gould, M. K.; Huang, B. Z.; Tammemagi, M. C.; Kinar, Y.; Shiff, R. Machine learning for early lung cancer identification using routine clinical and laboratory data. Am. J. Respir. Crit. Care Med. 2021, 204, 445–453.

4

Yang, J. S.; Xu, R. Y.; Wang, C. C.; Qiu, J. D.; Ren, B.; You, L. Early screening and diagnosis strategies of pancreatic cancer: A comprehensive review. Cancer Commun. 2021, 41, 1257–1274.

5
Acharya, B.; Acharya, A.; Gautam, S.; Ghimire, S. P.; Mishra, G.; Parajuli, N.; Sapkota, B. Advances in diagnosis of tuberculosis: An update into molecular diagnosis of Mycobacterium tuberculosis. Mol. Biol. Rep. 2020, 47, 4065–4075.https://doi.org/10.1007/s11033-020-05413-7
6

Vandenberg, O.; Martiny, D.; Rochas, O.; van Belkum, A.; Kozlakidis, Z. Considerations for diagnostic COVID-19 tests. Nat. Rev. Microbiol. 2021, 19, 171–183.

7

Ito, E.; Iha, K.; Yoshimura, T.; Nakaishi, K.; Watabe, S. Early diagnosis with ultrasensitive ELISA. Adv. Clin. Chem. 2021, 101, 121–133.

8

Afzal, A. Molecular diagnostic technologies for COVID-19: Limitations and challenges. J. Adv. Res. 2020, 26, 149–159.

9
Pagana, K. D.; Pagana, T. J.; Pagana, T. N. Mosby's Diagnostic and Laboratory Test Reference, 14th ed.; Elsevier: St. Louis, 2019.
10
Herring, W. Learning Radiology: Recognizing the Basics, 4th ed.; Elsevier: Philadelphia, 2019.
11

Lamoureux, C.; Hanna, T. N.; Sprecher, D.; Weber, S.; Callaway, E. Radiologist errors by modality, anatomic region, and pathology for 1.6 million exams: What we have learned. Emerg. Radiol. 2021, 28, 1135–1141.

12
Velusamy, P.; Su, C. H.; Ramasamy, P.; Arun, V.; Rajnish, N.; Raman, P.; Baskaralingam, V.; Senthil Kumar, S. M.; Gopinath, S. C. B. Volatile organic compounds as potential biomarkers for noninvasive disease detection by nanosensors: A comprehensive review. Crit. Rev. Anal. Chem., in press, https://doi.org/10.1080/10408347.2022.2043145.
13

Zhong, W. H.; Zhang, X. Y.; Zeng, Y. X.; Lin, D. J.; Wu, J. Recent applications and strategies in nanotechnology for lung diseases. Nano Res. 2021, 14, 2067–2089.

14
Zhang, S.; Pang, J. B.; Li, Y. F.; Yang, F.; Gemming, T.; Wang, K.; Wang, X.; Peng, S.; Liu, X. Y.; Chang, B. et al. Emerging internet of things driven carbon nanotubes-based devices. Nano Res., in press, https://doi.org/10.1007/s12274-021-3986-7.
15

Ruddy, E. N.; Carroll, L. A. Select the best VOC control strategy. Chem. Eng. Prog. 1993, 89, 28–35.

16

Kesselmeier, J.; Staudt, M. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J. Atmos. Chem. 1999, 33, 23–88.

17

Kukkar, D.; Vellingiri, K.; Kaur, R.; Bhardwaj, S. K.; Deep, A.; Kim, K. H. Nanomaterials for sensing of formaldehyde in air: Principles, applications, and performance evaluation. Nano Res. 2019, 12, 225–246.

18

Zhang, J.; Tian, Y. H.; Luo, Z. W.; Qian, C.; Li, W. W.; Duan, Y. X. Breath volatile organic compound analysis: An emerging method for gastric cancer detection. J. Breath Res. 2021, 15, 044002.

19

Zhong, X. H.; Li, D.; Du, W.; Yan, M. Q.; Wang, Y.; Huo, D. Q.; Hou, C. J. Rapid recognition of volatile organic compounds with colorimetric sensor arrays for lung cancer screening. Anal. Bioanal. Chem. 2018, 410, 3671–3681.

20

Buszewski, B.; Kęsy, M.; Ligor, T.; Amann, A. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr. 2007, 21, 553–566.

21
Zhu, B.; Wang, H. C. Diagnostics of Traditional Chinese Medicine; Singing Dragon: London, 2010.
22

Corradi, M.; Mutti, A. News from the breath analysis summit 2011. J. Breath Res. 2012, 6, 020201.

23

Dima, A. C.; Balaban, D. V.; Dima, A. Diagnostic application of volatile organic compounds as potential biomarkers for detecting digestive neoplasia: A systematic review. Diagnostics 2021, 11, 2317.

24

Vishinkin, R.; Busool, R.; Mansour, E.; Fish, F.; Esmail, A.; Kumar, P.; Gharaa, A.; Cancilla, J. C.; Torrecilla, J. S.; Skenders, G. et al. Profiles of volatile biomarkers detect tuberculosis from skin. Adv. Sci. 2021, 8, 2100235.

25

da Costa, B. R. B.; De Martinis, B. S. Analysis of urinary VOCs using mass spectrometric methods to diagnose cancer: A review. Clin. Mass Spectrom. 2020, 18, 27–37.

26

Janssens, E.; van Meerbeeck, J. P.; Lamote, K. Volatile organic compounds in human matrices as lung cancer biomarkers: A systematic review. Crit. Rev. Oncol. Hematol. 2020, 153, 103037.

27

Van Malderen, K.; De Winter, B. Y.; De Man, J. G.; De Schepper, H. U.; Lamote, K. Volatomics in inflammatory bowel disease and irritable bowel syndrome. EBioMedicine 2020, 54, 102725.

28

Broza, Y. Y.; Zhou, X.; Yuan, M. M.; Qu, D. Y.; Zheng, Y. B.; Vishinkin, R.; Khatib, M.; Wu, W. W.; Haick, H. Disease detection with molecular biomarkers: From chemistry of body fluids to nature-inspired chemical sensors. Chem. Rev. 2019, 119, 11761–11817.

29

Krilaviciute, A.; Heiss, J. A.; Leja, M.; Kupcinskas, J.; Hawick, H.; Brenner, H. Detection of cancer through exhaled breath: A systematic review. Oncotarget 2015, 6, 38643–38657.

30

Hakim, M.; Broza, Y. Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 2012, 112, 5949–5966.

31

Broza, Y. Y.; Vishinkin, R.; Barash, O.; Nakhleh, M. K.; Haick, H. Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem. Soc. Rev. 2018, 47, 4781–4859.

32

Haick, H.; Broza, Y. Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A. Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev. 2014, 43, 1423–1449.

33

Van den Velde, S.; Nevens, F.; Van Hee, P.; van Steenberghe, D.; Quirynen, M. GC-MS analysis of breath odor compounds in liver patients. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2008, 875, 344–348.

34

Lubes, G.; Goodarzi, M. GC-MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. J. Pharm. Biomed. Anal. 2018, 147, 313–322.

35
Mentana A. Camele I. Mang S. M. De Benedetto G. E. Frisullo S. Centonze D. Volatolomics approach by HS-SPME-GC-MS  and  multivariate  analysis  to  discriminate  olive  tree  varietiesinfected  by Xylella fastidiosa Phytochem. Anal. 2019 30 623 634 10.1002/pca.2835

Mentana, A.; Camele, I.; Mang, S. M.; De Benedetto, G. E.; Frisullo, S.; Centonze, D. Volatolomics approach by HS-SPME-GC- MS and multivariate analysis to discriminate olive tree varieties infected by Xylella fastidiosa. Phytochem. Anal. 2019, 30, 623–634.

36

Choi, M. J.; Oh, C. H. 2nd dimensional GC-MS analysis of sweat volatile organic compounds prepared by solid phase micro-extraction. Technol. Health Care 2014, 22, 481–488.

37

Gruber, B.; Keller, S.; Groeger, T.; Matuschek, G.; Szymczak, W.; Zimmermann, R. Breath gas monitoring during a glucose challenge by a combined PTR-QMS/GC×GC-TOFMS approach for the verification of potential volatile biomarkers. J. Breath Res. 2016, 10, 036003.

38

Rudnicka, J.; Kowalkowski, T.; Ligor, T.; Buszewski, B. Determination of volatile organic compounds as biomarkers of lung cancer by SPME-GC-TOF/MS and chemometrics. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2011, 879, 3360–3366.

39

Stefanuto, P. H.; Zanella, D.; Vercammen, J.; Henket, M.; Schleich, F.; Louis, R.; Focant, J. F. Multimodal combination of GC × GC-HRTOFMS and SIFT-MS for asthma phenotyping using exhaled breath. Sci. Rep. 2020, 10, 16159.

40

Yang, J.; Li, Y. J.; Liu, Q. Q.; Li, L.; Feng, A. Z.; Wang, T. Y.; Zheng, S.; Xu, A. D.; Lyu, J. Brief introduction of medical database and data mining technology in big data era. J. Evid. Based Med. 2020, 13, 57–69.

41

Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y. Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 2009, 4, 669–673.

42

Liu, K.; Shang, C. D.; Wang, Z. L.; Qi, Y. Y.; Miao, R.; Liu, K. Q.; Liu, T. H.; Fang, Y. Non-contact identification and differentiation of illicit drugs using fluorescent films. Nat. Commun. 2018, 9, 1695.

43

Hu, W. W.; Wan, L. T.; Jian, Y. Y.; Ren, C.; Jin, K.; Su, X. H.; Bai, X. X.; Haick, H.; Yao, M. S.; Wu, W. W. Electronic noses: From advanced materials to sensors aided with data processing. Adv. Mater. Technol. 2019, 4, 1800488.

44
Combined  volatolomics  for monitoring of human body chemistry Sci. Rep. 2014 4 4611 10.1038/srep04611

Broza, Y. Y.; Zuri, L.; Haick, H. Combined volatolomics for monitoring of human body chemistry. Sci. Rep. 2014, 4, 4611.

45

Xu, Z. Q.; Broza, Y. Y.; Ionsecu, R.; Tisch, U.; Ding, L.; Liu, H.; Song, Q.; Pan, Y. Y.; Xiong, F. X.; Gu, K. S. et al. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. Br. J. Cancer 2013, 108, 941–950.

46

Amal, H.; Ding, L.; Liu, B. B.; Tisch, U.; Xu, Z. Q.; Shi, D. Y.; Zhao, Y.; Chen, J.; Sun, R. X.; Liu, H. et al. The scent fingerprint of hepatocarcinoma: In-vitro metastasis prediction with volatile organic compounds (VOCS). Int. J. Nanomedicine 2012, 7, 4135–4146.

47

Xue, R. Y.; Dong, L.; Zhang, S.; Deng, C. H.; Liu, T. T.; Wang, J. Y.; Shen, X. Z. Investigation of volatile biomarkers in liver cancer blood using solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 1181–1186.

48

Hakim, M.; Billan, S.; Tisch, U.; Peng, G.; Dvrokind, I.; Marom, O.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosis of head-and-neck cancer from exhaled breath. Br. J. Cancer 2011, 104, 1649–1655.

49

Peng, G.; Hakim, M.; Broza, Y. Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer 2010, 103, 542–551.

50

Phillips, M.; Altorki, N.; Austin, J. H. M.; Cameron, R. B.; Cataneo, R. N.; Kloss, R.; Maxfield, R. A.; Munawar, M. I.; Pass, H. I.; Rashid, A. et al. Detection of lung cancer using weighted digital analysis of breath biomarkers. Clin. Chim. Acta 2008, 393, 76–84.

51

Phillips, M.; Cataneo, R. N.; Ditkoff, B. A.; Fisher, P.; Greenberg, J.; Gunawardena, R.; Kwon, C. S.; Rahbari-Oskoui, F.; Wong, C. Volatile markers of breast cancer in the breath. Breast J. 2003, 9, 184–191.

52

Phillips, M.; Cataneo, R. N.; Ditkoff, B. A.; Fisher, P.; Greenberg, J.; Gunawardena, R.; Kwon, C. S.; Tietje, O.; Wong, C. Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res. Treat. 2006, 99, 19–21.

53

Phillips, M.; Cataneo, R. N.; Saunders, C.; Hope, P.; Schmitt, P.; Wai, J. Volatile biomarkers in the breath of women with breast cancer. J. Breath Res. 2010, 4, 026003.

54

Poli, D.; Carbognani, P.; Corradi, M.; Goldoni, M.; Acampa, O.; Balbi, B.; Bianchi, L.; Rusca, M.; Mutti, A. Exhaled volatile organic compounds in patients with non-small cell lung cancer: Cross sectional and nested short-term follow-up study. Respir. Res. 2005, 6, 71.

55

Fuchs, P.; Loeseken, C.; Schubert, J. K.; Miekisch, W. Breath gas aldehydes as biomarkers of lung cancer. Int. J. Cancer 2010, 126, 2663–2670.

56

Broza, Y. Y.; Kremer, R.; Tisch, U.; Gevorkyan, A.; Shiban, A.; Best, L. A.; Haick, H. A nanomaterial-based breath test for short-term follow-up after lung tumor resection. Nanomedicine 2013, 9, 15–21.

57

Gaspar, E. M.; Lucena, A. F.; Duro da Costa, J.; Chaves das Neves, H. Organic metabolites in exhaled human breath—A multivariate approach for identification of biomarkers in lung disorders. J. Chromatogr. A 2009, 1216, 2749–2756.

58

Song, G.; Qin, T.; Liu, H.; Xu, G. B.; Pan, Y. Y.; Xiong, F. X.; Gu, K. S.; Sun, G. P.; Chen, Z. D. Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer 2010, 67, 227–231.

59

Barash, O.; Peled, N.; Hirsch, F. R.; Haick, H. Sniffing the unique “odor print” of non-small-cell lung cancer with gold nanoparticles. Small 2009, 5, 2618–2624.

60

Davies, M. P. A.; Barash, O.; Jeries, R.; Peled, N.; Ilouze, M.; Hyde, R.; Marcus, M. W.; Field, J. K.; Haick, H. Unique volatolomic signatures of TP53 and KRAS in lung cells. Br. J. Cancer 2014, 111, 1213–1221.

61

Chen, X.; Xu, F. J.; Wang, Y.; Pan, Y. F.; Lu, D. J.; Wang, P.; Ying, K. J.; Chen, E. G.; Zhang, W. M. A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer 2007, 110, 835–844.

62

Filipiak, W.; Sponring, A.; Filipiak, A.; Ager, C.; Schubert, J.; Miekisch, W.; Amann, A.; Troppmair, J. TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 182–195.

63

Amal, H.; Leja, M.; Funka, K.; Skapars, R.; Sivins, A.; Ancans, G.; Liepniece-Karele, I.; Kikuste, I.; Lasina, I.; Haick, H. Detection of precancerous gastric lesions and gastric cancer through exhaled breath. Gut 2016, 65, 400–407.

64

Hicks, L. C.; Huang, J. Z.; Kumar, S.; Powles, S. T.; Orchard, T. R.; Hanna, G. B.; Williams, H. R. T. Analysis of exhaled breath volatile organic compounds in inflammatory bowel disease: A pilot study. J. Crohns Colitis 2015, 9, 731–737.

65

Karban, A.; Nakhleh, M. K.; Cancilla, J. C.; Vishinkin, R.; Rainis, T.; Koifman, E.; Jeries, R.; Ivgi, H.; Torrecilla, J. S.; Haick, H. Programmed nanoparticles for tailoring the detection of inflammatory bowel diseases and irritable bowel syndrome disease via breathprint. Adv. Healthc. Mater. 2016, 5, 2339–2344.

66

Winlaw, D. S.; Keogh, A. M.; Schyvens, C. G.; Spratt, P. M.; Macdonald, P. S.; Smythe, G. A. Increased nitric oxide production in heart failure. Lancet 1994, 344, 373–374.

67

Pijls, K. E.; Smolinska, A.; Jonkers, D. M. A. E.; Dallinga, J. W.; Masclee, A. A. M.; Koek, G. H.; van Schooten, F. J. A profile of volatile organic compounds in exhaled air as a potential non-invasive biomarker for liver cirrhosis. Sci. Rep. 2016, 6, 19903.

68

Chen, S.; Zieve, L.; Mahadevan, V. Mercaptans and dimethyl sulfide in the breath of patients with cirrhosis of the liver. Effect of feeding methionine. J. Lab. Clin. Med. 1970, 75, 628–635.

69

Kaji, H.; Hisamura, M.; Saito, N.; Murao, M. Gas chromatographic determination of volatile sulfur compounds in the expired alveolar air in hepatopathic subjects. J. Chromatogr. 1978, 145, 464–468.

70

Cikach, F. S. Jr.; Tonelli, A. R.; Barnes, J.; Paschke, K.; Newman, J.; Grove, D.; Dababneh, L.; Wang, S. H.; Dweik, R. A. Breath analysis in pulmonary arterial hypertension. Chest 2014, 145, 551–558.

71

Mansoor, J. K.; Schelegle, E. S.; Davis, C. E.; Walby, W. F.; Zhao, W. X.; Aksenov, A. A.; Pasamontes, A.; Figueroa, J.; Allen, R. Analysis of volatile compounds in exhaled breath condensate in patients with severe pulmonary arterial hypertension. PLoS One 2014, 9, e95331.

72

Phillips, M.; Cataneo, R. N.; Condos, R.; Ring Erickson, G. A.; Greenberg, J.; La Bombardi, V.; Munawar, M. I.; Tietje, O. Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis 2007, 87, 44–52.

73

Tangerman, A.; Winkel, E. G. Extra-oral halitosis: An overview. J. Breath Res. 2010, 4, 017003.

74

Avincsal, M. O.; Altundag, A.; Ulusoy, S.; Dinc, M. E.; Dalgic, A.; Topak, M. Halitosis associated volatile sulphur compound levels in patients with laryngopharyngeal reflux. Eur. Arch. Otorhinolaryngol. 2016, 273, 1515–1520.

75

Corradi, M.; Rubinstein, I.; Andreoli, R.; Manini, P.; Caglieri, A.; Poli, D.; Alinovi, R.; Mutti, A. Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2003, 167, 1380–1386.

76

Van Berkel, J. J. B. N.; Dallinga, J. W.; Möller, G. M.; Godschalk, R. W. L.; Moonen, E. J.; Wouters, E. F. M.; Van Schooten, F. J. A profile of volatile organic compounds in breath discriminates COPD patients from controls. Respir. Med. 2010, 104, 557–563.

77

Paredi, P.; Kharitonov, S. A.; Leak, D.; Ward, S.; Cramer, D.; Barnes, P. J. Exhaled ethane, a marker of lipid peroxidation, is elevated in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2000, 162, 369–373.

78

Aksenov, A. A.; Gojova, A.; Zhao, W. X.; Morgan, J. T.; Sankaran, S.; Sandrock, C. E.; Davis, C. E. Characterization of volatile organic compounds in human leukocyte antigen heterologous expression systems: A cell’s “chemical odor fingerprint”. ChemBioChem 2012, 13, 1053–1059.

79

Halliwell, B.; Gutteridge, J. M.; Cross, C. E. Free radicals, antioxidants, and human disease: Where are we now? J. Lab. Clin. Med. 1992, 119, 598–620.

80

Broza, Y. Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A.; Haick, H. Hybrid volatolomics and disease detection. Angew. Chem., Int. Ed. 2015, 54, 11036–11048.

81

Opitz, P.; Herbarth, O. The volatilome-investigation of volatile organic metabolites (VOM) as potential tumor markers in patients with head and neck squamous cell carcinoma (HNSCC). J. Otolaryngol. Head Neck Surg. 2018, 47, 42.

82

Cauchi, M.; Weber, C. M.; Bolt, B. J.; Spratt, P. B.; Bessant, C.; Turner, D. C.; Willis, C. M.; Britton, L. E.; Turner, C.; Morgan, G. Evaluation of gas chromatography mass spectrometry and pattern recognition for the identification of bladder cancer from urine headspace. Anal. Methods 2016, 8, 4037–4046.

83

Guadagni, R.; Miraglia, N.; Simonelli, A.; Silvestre, A.; Lamberti, M.; Feola, D.; Acampora, A.; Sannolo, N. Solid-phase microextraction-gas chromatography-mass spectrometry method validation for the determination of endogenous substances: Urinary hexanal and heptanal as lung tumor biomarkers. Anal. Chim. Acta 2011, 701, 29–36.

84

Hanai, Y.; Shimono, K.; Matsumura, K.; Vachani, A.; Albelda, S.; Yamazaki, K.; Beauchamp, G. K.; Oka, H. Urinary volatile compounds as biomarkers for lung cancer. Biosci. Biotechnol. Biochem. 2012, 76, 679–684.

85

Yang, Q.; Shi, X. Z.; Wang, Y.; Wang, W. Z.; He, H. B.; Lu, X.; Xu, G. W. Urinary metabonomic study of lung cancer by a fully automatic hyphenated hydrophilic interaction/RPLC-MS system. J. Sep. Sci. 2010, 33, 1495–1503.

86

Banday, K. M.; Pasikanti, K. K.; Chan, E. C. Y.; Singla, R.; Rao, K. V. S.; Chauhan, V. S.; Nanda, R. K. Use of urine volatile organic compounds to discriminate tuberculosis patients from healthy subjects. Anal. Chem. 2011, 83, 5526–5534.

87

Dospinescu, V. M.; Tiele, A.; Covington, J. A. Sniffing out urinary tract infection—Diagnosis based on volatile organic compounds and smell profile. Biosensors 2020, 10, 83.

88

Yang, H.; Kim, D.; Kim, J.; Moon, D.; Song, H. S.; Lee, M.; Hong, S.; Park, T. H. Nanodisc-based bioelectronic nose using olfactory receptor produced in Escherichia coli for the assessment of the death-associated odor cadaverine. ACS Nano 2017, 11, 11847–11855.

89

Probert, C. S. J.; Ahmed, I.; Khalid, T.; Johnson, E.; Smith, S.; Ratcliffe, N. Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases. J. Gastrointestin. Liver Dis. 2009, 18, 337–343.

90

Cummings, J. H. Short chain fatty acids in the human colon. Gut 1981, 22, 763–779.

91

Yokoyama, M. T.; Carlson, J. R. Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole. Am. J. Clin. Nutr. 1979, 32, 173–178.

92

Lee, J. H.; Karamychev, V. N.; Kozyavkin, S. A.; Mills, D.; Pavlov, A. R.; Pavlova, N. V.; Polouchine, N. N.; Richardson, P. M.; Shakhova, V. V.; Slesarev, A. I. et al. Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth. BMC Genomics 2008, 9, 247.

93

Ahmed, I.; Greenwood, R.; de Lacy Costello, B.; Ratcliffe, N. M.; Probert, C. S. An investigation of fecal volatile organic metabolites in irritable bowel syndrome. PLoS One 2013, 8, e58204.

94

Bannaga, A. S.; Farrugia, A.; Arasaradnam, R. P. Diagnosing inflammatory bowel disease using noninvasive applications of volatile organic compounds: A systematic review. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 1113–1122.

95

Homann, N. Alcohol and upper gastrointestinal tract cancer: The role of local acetaldehyde production. Addict. Biol. 2001, 6, 309–323.

96

Studer, S. M.; Orens, J. B.; Rosas, I.; Krishnan, J. A.; Cope, K. A.; Yang, S.; Conte, J. V.; Becker, P. B.; Risby, T. H. Patterns and significance of exhaled-breath biomarkers in lung transplant recipients with acute allograft rejection. J. Heart Lung Transplant. 2001, 20, 1158–1166.

97

Tisch, U.; Schlesinger, I.; Ionescu, R.; Nassar, M.; Axelrod, N.; Robertman, D.; Tessler, Y.; Azar, F.; Marmur, A.; Aharon-Peretz, J. et al. Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine 2013, 8, 43–56.

98

Paredi, P.; Kharitonov, S. A.; Barnes, P. J. Elevation of exhaled ethane concentration in asthma. Am. J. Respir. Crit. Care Med. 2000, 162, 1450–1454.

99

Olopade, C. O.; Zakkar, M.; Swedler, W. I.; Rubinstein, I. Exhaled pentane levels in acute asthma. Chest 1997, 111, 862–865.

100

Hunt, J. F.; Erwin, E.; Palmer, L.; Vaughan, J.; Malhotra, N.; Platts-Mills, T. A. E.; Gaston, B. Expression and activity of pH-regulatory glutaminase in the human airway epithelium. Am. J. Respir. Crit. Care Med. 2002, 165, 101–107.

101

Ashutosh, K. Nitric oxide and asthma: A review. Curr. Opin. Pulm. Med. 2000, 6, 21–25.

102

Kharitonov, S. A.; Yates, D.; Robbins, R. A.; Barnes, P. J.; Logan-Sinclair, R.; Shinebourne, E. A. Increased nitric oxide in exhaled air of asthmatic patients. Lancet 1994, 343, 133–135.

103

Persson, M. G.; Gustafsson, L. E.; Zetterström, O.; Agrenius, V.; Ihre, E. Single-breath nitric oxide measurements in asthmatic patients and smokers. Lancet 1994, 343, 146–147.

104

Montuschi, P.; Corradi, M.; Ciabattoni, G.; Nightingale, J.; Kharitonov, S. A.; Barnes, P. J. Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am. J. Respir. Crit. Care Med. 1999, 160, 216–220.

105

Horváth, I.; Donnelly, L. E.; Kiss, A.; Kharitonov, S. A.; Lim, S.; Chung, K. F.; Barnes, P. J. Combined use of exhaled hydrogen peroxide and nitric oxide in monitoring asthma. Am. J. Respir. Crit. Care Med. 1998, 158, 1042–1046.

106

Marom, O.; Nakhoul, F.; Tisch, U.; Shiban, A.; Abassi, Z.; Haick, H. Gold nanoparticle sensors for detecting chronic kidney disease and disease progression. Nanomedicine 2012, 7, 639–650.

107

Simenhoff, M. L.; Burke, J. F.; Saukkonen, J. J.; Ordinario, A. T.; Doty, R.; Dunn, S. Biochemical profile of uremic breath. N. Engl. J. Med. 1977, 297, 132–135.

108

Altomare, D. F.; Di Lena, M.; Porcelli, F.; Trizio, L.; Travaglio, E.; Tutino, M.; Dragonieri, S.; Memeo, V.; de Gennaro, G. Exhaled volatile organic compounds identify patients with colorectal cancer. Br. J. Surg. 2013, 100, 144–150.

109

McCurdy, M. R.; Sharafkhaneh, A.; Abdel-Monem, H.; Rojo, J.; Tittel, F. K. Exhaled nitric oxide parameters and functional capacity in chronic obstructive pulmonary disease. J. Breath Res. 2011, 5, 016003.

110

Dekhuijzen, P. N.; Aben, K. K.; Dekker, I.; Aarts, L. P.; Wielders, P. L.; Van Herwaarden, C. L.; Bast, A. Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1996, 154, 813–816.

111

Balfour-Lynn, I. M.; Laverty, A.; Dinwiddie, R. Reduced upper airway nitric oxide in cystic fibrosis. Arch. Dis. Child. 1996, 75, 319–322.

112

Thomas, S. R.; Kharitonov, S. A.; Scott, S. F.; Hodson, M. E.; Barnes, P. J. Nasal and exhaled nitric oxide is reduced in adult patients with cystic fibrosis and does not correlate with cystic fibrosis genotype. Chest 2000, 117, 1085–1089.

113

Kamboures, M. A.; Blake, D. R.; Cooper, D. M.; Newcomb, R. L.; Barker, M.; Larson, J. K.; Meinardi, S.; Nussbaum, E.; Rowland, F. S. Breath sulfides and pulmonary function in cystic fibrosis. Proc. Natl. Acad. Sci. USA 2005, 102, 15762–15767.

114

Galassetti, P. R.; Novak, B.; Nemet, D.; Rose-Gottron, C.; Cooper, D. M.; Meinardi, S.; Newcomb, R.; Zaldivar, F.; Blake, D. R. Breath ethanol and acetone as indicators of serum glucose levels: An initial report. Diabetes Technol. Ther. 2005, 7, 115–123.

115

Novak, B. J.; Blake, D. R.; Meinardi, S.; Rowland, F. S.; Pontello, A.; Cooper, D. M.; Galassetti, P. R. Exhaled methyl nitrate as a noninvasive marker of hyperglycemia in type 1 diabetes. Proc. Natl. Acad. Sci. USA 2007, 104, 15613–15618.

116

Pelli, M. A.; Trovarelli, G.; Capodicasa, E.; De Medio, G. E.; Bassotti, G. Breath alkanes determination in ulcerative colitis and Crohn’s disease. Dis. Colon Rectum 1999, 42, 71–76.

117

Kokoszka, J.; Nelson, R. L.; Swedler, W. I.; Skosey, J.; Abcarian, H. Determination of inflammatory bowel disease activity by breath pentane analysis. Dis. Colon Rectum 1993, 36, 597–601.

118

Phillips, M.; Boehmer, J. P.; Cataneo, R. N.; Cheema, T.; Eisen, H. J.; Fallon, J. T.; Fisher, P. E.; Gass, A.; Greenberg, J.; Kobashigawa, J. et al. Prediction of heart transplant rejection with a breath test for markers of oxidative stress. Am. J. Cardiol. 2004, 94, 1593–1594.

119

Hiroshi, K.; Masaya, H.; Nariyoshi, S.; Makoto, M. Evaluation of volatile sulfur compounds in the expired alveolar gas in patients with liver cirrhosis. Clin. Chim. Acta 1978, 85, 279–284.

120

Tangerman, A.; Meuwese-Arends, M. T.; van Tongeren, J. H. M. A new sensitive assay for measuring volatile sulphur compounds in human breath by Tenax trapping and gas chromatography and its application in liver cirrhosis. Clin. Chim. Acta 1983, 130, 103–110.

121

Hisamura, M. Quantitative analysis of methyl mercaptan and dimethyl sulfide in human expired alveolar gas and its clinical application: Study in normal subjects and patients with liver diseases. J. Jpn. Soc. Intern. Med. 1979, 68, 1284–1292.

122

Lee, J.; Ngo, J.; Blake, D.; Meinardi, S.; Pontello, A. M.; Newcomb, R.; Galassetti, P. R. Improved predictive models for plasma glucose estimation from multi-linear regression analysis of exhaled volatile organic compounds. J. Appl. Physiol. 2009, 107, 155–160.

123

Miekisch, W.; Schubert, J. K.; Noeldge-Schomburg, G. F. E. Diagnostic potential of breath analysis—Focus on volatile organic compounds. Clin. Chim. Acta 2004, 347, 25–39.

124

Nakhleh, M. K.; Amal, H.; Awad, H.; Gharra, A.; Abu-Saleh, N.; Jeries, R.; Haick, H.; Abassi, Z. Sensor arrays based on nanoparticles for early detection of kidney injury by breath samples. Nanomedicine 2014, 10, 1767–1776.

125

Ulanowska, A.; Kowalkowski, T.; Trawińska, E.; Buszewski, B. The application of statistical methods using VOCs to identify patients with lung cancer. J. Breath Res. 2011, 5, 046008.

126

Filipiak, W.; Filipiak, A.; Sponring, A.; Schmid, T.; Zelger, B.; Ager, C.; Klodzinska, E.; Denz, H.; Pizzini, A.; Lucciarini, P. et al. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. J. Breath Res. 2014, 8, 027111.

127

Rudnicka, J.; Walczak, M.; Kowalkowski, T.; Jezierski, T.; Buszewski, B. Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography-mass spectrometry versus trained dogs. Sens. Actuators B: Chem. 2014, 202, 615–621.

128

Poli, D.; Goldoni, M.; Corradi, M.; Acampa, O.; Carbognani, P.; Internullo, E.; Casalini, A.; Mutti, A. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME–GC/MS. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2010, 878, 2643–2651.

129

Kischkel, S.; Miekisch, W.; Sawacki, A.; Straker, E. M.; Trefz, P.; Amann, A.; Schubert, J. K. Breath biomarkers for lung cancer detection and assessment of smoking related effects—Confounding variables, influence of normalization and statistical algorithms. Clin. Chim. Acta 2010, 411, 1637–1644.

130

Wehinger, A.; Schmid, A.; Mechtcheriakov, S.; Ledochowski, M.; Grabmer, C.; Gastl, G. A.; Amann, A. Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas. Int. J. Mass Spectrom. 2007, 265, 49–59.

131

Phillips, M.; Gleeson, K.; Hughes, J. M. B.; Greenberg, J.; Cataneo, R. N.; Baker, L.; McVay, W. P. Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study. Lancet 1999, 353, 1930–1933.

132

Callol-Sanchez, L.; Munoz-Lucas, M. A.; Gomez-Martin, O.; Maldonado-Sanz, J. A.; Civera-Tejuca, C.; Gutierrez-Ortega, C.; Rodriguez-Trigo, G.; Jareno-Esteban, J. Observation of nonanoic acid and aldehydes in exhaled breath of patients with lung cancer. J. Breath Res. 2017, 11, 026004.

133

Phillips, M.; Cataneo, R. N.; Cummin, A. R. C.; Gagliardi, A. J.; Gleeson, K.; Greenberg, J.; Maxfield, R. A.; Rom, W. N. Detection of lung cancer with volatile markers in the breath. Chest 2003, 123, 2115–2123.

134

Oguma, T.; Nagaoka, T.; Kurahashi, M.; Kobayashi, N.; Yamamori, S.; Tsuji, C.; Takiguchi, H.; Niimi, K.; Tomomatsu, H.; Tomomatsu, K. et al. Clinical contributions of exhaled volatile organic compounds in the diagnosis of lung cancer. PLoS One 2017, 12, e0174802.

135

Phillips, M.; Altorki, N.; Austin, J. H. M.; Cameron, R. B.; Cataneo, R. N.; Greenberg, J.; Kloss, R.; Maxfield, R. A.; Munawar, M. I.; Pass, H. I. et al. Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark. 2007, 3, 95–109.

136

D’Amico, A.; Pennazza, G.; Santonico, M.; Martinelli, E.; Roscioni, C.; Galluccio, G.; Paolesse, R.; Di Natale, C. An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 2010, 68, 170–176.

137

Bajtarevic, A.; Ager, C.; Pienz, M.; Klieber, M.; Schwarz, K.; Ligor, M.; Ligor, T.; Filipiak, W.; Denz, H.; Fiegl, M. et al. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 2009, 9, 348.

138

Yu, H.; Xu, L.; Wang, P. Solid phase microextraction for analysis of alkanes and aromatic hydrocarbons in human breath. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2005, 826, 69–74.

139

Fu, X. A.; Li, M. X.; Knipp, R. J.; Nantz, M. H.; Bousamra, M. Noninvasive detection of lung cancer using exhaled breath. Cancer Med. 2014, 3, 174–181.

140

Broza, Y. Y.; Har-Shai, L.; Jeries, R.; Cancilla, J. C.; Glass-Marmor, L.; Lejbkowicz, I.; Torrecilla, J. S.; Yao, X. L.; Feng, X. L.; Narita, A. et al. Exhaled breath markers for nonimaging and noninvasive measures for detection of multiple sclerosis. ACS Chem. Neurosci. 2017, 8, 2402–2413.

141

Ionescu, R.; Broza, Y.; Shaltieli, H.; Sadeh, D.; Zilberman, Y.; Feng, X. L.; Glass-Marmor, L.; Lejbkowicz, I.; Müllen, K.; Miller, A. et al. Detection of multiple sclerosis from exhaled breath using bilayers of polycyclic aromatic hydrocarbons and single-wall carbon nanotubes. ACS Chem. Neurosci. 2011, 2, 687–693.

142

Tisch, U.; Aluf, Y.; Ionescu, R.; Nakhleh, M.; Bassal, R.; Axelrod, N.; Robertman, D.; Tessler, Y.; Finberg, J. P. M.; Haick, H. Detection of asymptomatic nigrostriatal dopaminergic lesion in rats by exhaled air analysis using carbon nanotube sensors. ACS Chem. Neurosci. 2012, 3, 161–166.

143

Assady, S.; Marom, O.; Hemli, M.; Ionescu, R.; Jeries, R.; Tisch, U.; Abassi, Z.; Haick, H. Impact of hemodialysis on exhaled volatile organic compounds in end-stage renal disease: A pilot study. Nanomedicine 2014, 9, 1035–1045.

144

Humad, S.; Zarling, E.; Clapper, M.; Skosey, J. L. Breath pentane excretion as a marker of disease activity in rheumatoid arthritis. Free Radic. Res. Commun. 1988, 5, 101–106.

145

Phillips, M.; Sabas, M.; Greenberg, J. Increased pentane and carbon disulfide in the breath of patients with schizophrenia. J. Clin. Pathol. 1993, 46, 861–864.

146

Wang, C. S.; Dong, R.; Wang, X. Y.; Lian, A. L.; Chi, C. J.; Ke, C. F.; Guo, L.; Liu, S. S.; Zhao, W.; Xu, G. W. et al. Exhaled volatile organic compounds as lung cancer biomarkers during one-lung ventilation. Sci. Rep. 2014, 4, 7312.

147

Di Lena, M.; Porcelli, F.; Altomare, D. F. Volatile organic compounds as new biomarkers for colorectal cancer: A review. Colorectal Dis. 2016, 18, 654–663.

148

Macfarlane, G. T.; Cummings, J. H.; Macfarlane, S.; Gibson, G. R. Influence of retention time on degradation of pancreatic enzymes by human colonic bacteria grown in a 3-stage continuous culture system. J. Appl. Bacteriol. 1989, 67, 521–527.

149

Woodmansey, E. J. Intestinal bacteria and ageing. J. Appl. Microbiol. 2007, 102, 1178–1186.

150

Navaneethan, U.; Parsi, M. A.; Lourdusamy, D.; Grove, D.; Sanaka, M. R.; Hammel, J. P.; Vargo, J. J.; Dweik, R. A. Volatile organic compounds in urine for noninvasive diagnosis of malignant biliary strictures: A pilot study. Dig. Dis. Sci. 2015, 60, 2150–2157.

151

Silva, C. L.; Passos, M.; Câmara, J. S. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. Br. J. Cancer 2011, 105, 1894–1904.

152

Wang, D. C.; Wang, C. S.; Pi, X.; Guo, L.; Wang, Y.; Li, M. J.; Feng, Y.; Lin, Z. W.; Hou, W.; Li, E. Y. Urinary volatile organic compounds as potential biomarkers for renal cell carcinoma. Biomed. Rep. 2016, 5, 68–72.

153

Silva, C. L.; Passos, M.; Câmara, J. S. Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers—A powerful strategy for breast cancer diagnosis. Talanta 2012, 89, 360–368.

154

Nam, H.; Chung, B. C.; Kim, Y.; Lee, K.; Lee, D. Combining tissue transcriptomics and urine metabolomics for breast cancer biomarker identification. Bioinformatics 2009, 25, 3151–3157.

155

Khalid, T.; Aggio, R.; White, P.; De Lacy Costello, B.; Persad, R.; Al-Kateb, H.; Jones, P.; Probert, C. S.; Ratcliffe, N. Urinary volatile organic compounds for the detection of prostate cancer. PLoS One 2015, 10, e0143283.

156

Wang, M. G.; Xie, R. J.; Jia, X. B.; Liu, R. C. Urinary volatile organic compounds as potential biomarkers in idiopathic membranous nephropathy. Med Princ. Pract. 2017, 26, 375–380.

157

Abaffy, T; Möller, M.; Riemer, D. D.; Milikowski, C.; DeFazio, R. A. A case report-volatile metabolomic signature of malignant melanoma using matching skin as a control. J. Cancer Sci. Ther. 2011, 3, 140–144.

158

Abaffy, T.; Duncan, R.; Riemer, D. D.; Tietje, O.; Elgart, G.; Milikowski, C.; Defazio, R. A. Differential volatile signatures from skin, naevi and melanoma: A novel approach to detect a pathological process. PLoS One 2010, 5, e13813.

159

Allardyce, R. A.; Hill, A. L.; Murdoch, D. R. The rapid evaluation of bacterial growth and antibiotic susceptibility in blood cultures by selected ion flow tube mass spectrometry. Diagn. Microbiol. Infect. Dis. 2006, 55, 255–261.

160

Boots, A. W.; Smolinska, A.; van Berkel, J. J. B. N.; Fijten, R. R. R.; Stobberingh, E. E.; Boumans, M. L. L.; Moonen, E. J.; Wouters, E. F. M.; Dallinga, J. W.; Van Schooten, F. J. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry. J. Breath Res. 2014, 8, 027106.

161

Preti, G.; Thaler, E.; Hanson, C. W.; Troy, M.; Eades, J.; Gelperin, A. Volatile compounds characteristic of sinus-related bacteria and infected sinus mucus: Analysis by solid-phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2009, 877, 2011–2018.

162

Zscheppank, C.; Wiegand, H. L.; Lenzen, C.; Wingender, J.; Telgheder, U. Investigation of volatile metabolites during growth of Escherichia coli and Pseudomonas aeruginosa by needle trap-GC-MS. Anal. Bioanal. Chem. 2014, 406, 6617–6628.

163

Kunze, N.; Göpel, J.; Kuhns, M.; Jünger, M.; Quintel, M.; Perl, T. Detection and validation of volatile metabolic patterns over different strains of two human pathogenic bacteria during their growth in a complex medium using multi-capillary column-ion mobility spectrometry (MCC-IMS). Appl. Microbiol. Biotechnol. 2013, 97, 3665–3676.

164

Shestivska, V.; Nemec, A.; Dřevínek, P.; Sovová, K.; Dryahina, K.; Španěl, P. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 2459–2467.

165

Neerincx, A. H.; Geurts, B. P.; Habets, M. F. J.; Booij, J. A.; van Loon, J.; Jansen, J. J.; Buydens, L. M. C.; van Ingen, J.; Mouton, J. W.; Harren, F. J. M. et al. Identification of Pseudomonas aeruginosa and Aspergillus fumigatus mono- and co-cultures based on volatile biomarker combinations. J. Breath Res. 2016, 10, 016002.

166

Schöller, C.; Molin, S.; Wilkins, K. Volatile metabolites from some gram-negative bacteria. Chemosphere 1997, 35, 1487–1495.

167

Filipiak, W.; Sponring, A.; Baur, M. M.; Filipiak, A.; Ager, C.; Wiesenhofer, H.; Nagl, M.; Troppmair, J.; Amann, A. Molecular analysis of volatile metabolites released specifically by staphylococcus aureus and pseudomonas aeruginosa. BMC Microbiol. 2012, 12, 113.

168

Bean, H. D.; Dimandja, J. M. D.; Hill, J. E. Bacterial volatile discovery using solid phase microextraction and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2012, 901, 41–46.

169

Shestivska, V.; Španěl, P.; Dryahina, K.; Sovová, K.; Smith, D.; Musílek, M.; Nemec, A. Variability in the concentrations of volatile metabolites emitted by genotypically different strains of Pseudomonas aeruginosa. J. Appl. Microbiol. 2012, 113, 701–713.

170

Carroll, W.; Lenney, W.; Wang, T. S.; Španěl, P.; Alcock, A.; Smith, D. Detection of volatile compounds emitted by Pseudomonas aeruginosa using selected ion flow tube mass spectrometry. Pediatr. Pulmonol. 2005, 39, 452–456.

171

Yu, K. S.; Hamilton-Kemp, T. R.; Archbold, D. D.; Collins, R. W.; Newman, M. C. Volatile compounds from Escherichia coli O157:H7 and their absorption by strawberry fruit. J. Agric. Food Chem. 2000, 48, 413–417.

172

Storer, M. K.; Hibbard-Melles, K.; Davis, B.; Scotter, J. Detection of volatile compounds produced by microbial growth in urine by selected ion flow tube mass spectrometry (SIFT-MS). J. Microbiol. Methods 2011, 87, 111–113.

173

Maddula, S.; Blank, L. M.; Schmid, A.; Baumbach, J. I. Detection of volatile metabolites of Escherichia coli by multi capillary column coupled ion mobility spectrometry. Anal. Bioanal. Chem. 2009, 394, 791–800.

174

Guamán, A. V.; Carreras, A.; Calvo, D.; Agudo, I.; Navajas, D.; Pardo, A.; Marco, S.; Farré, R. Rapid detection of sepsis in rats through volatile organic compounds in breath. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2012, 881–882, 76–82.

175

Chippendale, T. W. E.; Španěl, P.; Smith, D. Time-resolved selected ion flow tube mass spectrometric quantification of the volatile compounds generated by E. coli JM109 cultured in two different media. Rapid Commun. Mass Spectrom. 2011, 25, 2163–2172.

176

Bianchi, F.; Careri, M.; Mangia, A.; Mattarozzi, M.; Musci, M.; Concina, I.; Falasconi, M.; Gobbi, E.; Pardo, M.; Sberveglieri, G. Differentiation of the volatile profile of microbiologically contaminated canned tomatoes by dynamic headspace extraction followed by gas chromatography-mass spectrometry analysis. Talanta 2009, 77, 962–970.

177

Umber, B. J.; Shin, H. W.; Meinardi, S.; Leu, S. Y.; Zaldivar, F.; Cooper, D. M.; Blake, D. R. Gas signatures from Escherichia coli and Escherichia coli-inoculated human whole blood. Clin. Transl. Med. 2013, 2, 13.

178

Elgaali, H.; Hamilton-Kemp, T. R.; Newman, M. C.; Collins, R. W.; Yu, K. S.; Archbold, D. D. Comparison of long-chain alcohols and other volatile compounds emitted from food-borne and related gram positive and gram negative bacteria. J. Basic Microbiol. 2002, 42, 373–380.

179

Zhu, J. J.; Bean, H. D.; Kuo, Y. M.; Hill, J. E. Fast detection of volatile organic compounds from bacterial cultures by secondary electrospray ionization-mass spectrometry. J. Clin. Microbiol. 2010, 48, 4426–4431.

180

Saranya, R.; Aarthi, R.; Sankaran, K. Simple and specific colorimetric detection of Staphylococcus using its volatile 2-[3-acetoxy-4,4,14-trimethylandrost-8-en-17-yl] propanoic acid in the liquid phase and head space of cultures. Appl. Microbiol. Biotechnol. 2015, 99, 4423–4433.

181

Martin, H. J.; Turner, M. A.; Bandelow, S.; Edwards, L.; Riazanskaia, S.; Thomas, C. L. P. Volatile organic compound markers of psychological stress in skin: A pilot study. J. Breath Res. 2016, 10, 046012.

182

Ara, K.; Hama, M.; Akiba, S.; Koike, K.; Okisaka, K.; Hagura, T.; Kamiya, T.; Tomita, F. Foot odor due to microbial metabolism and its control. Can. J. Microbiol. 2006, 52, 357–364.

183

Yamazaki, S.; Hoshino, K.; Kusuhara, M. Odor associated with aging. Anti-Aging Med. 2010, 7, 60–65.

184

Gallagher, M.; Wysocki, C. J.; Leyden, J. J.; Spielman, A. I.; Sun, X.; Preti, G. Analyses of volatile organic compounds from human skin. Br. J. Dermatol. 2008, 159, 780–791.

185

Abaffy, T.; Möller, M. G.; Riemer, D. D.; Milikowski, C.; DeFazio, R. A. Comparative analysis of volatile metabolomics signals from melanoma and benign skin: A pilot study. Metabolomics 2013, 9, 998–1008.

186

Campbell, L. F.; Farmery, L.; George, S. M. C.; Farrant, P. B. J. Canine olfactory detection of malignant melanoma. BMJ Case Rep. 2013, 2013, bcr2013008566.

187

D'Amico, A.; Bono, R.; Pennazza, G.; Santonico, M.; Mantini, G.; Bernabei, M.; Zarlenga, M.; Roscioni, C.; Martinelli, E.; Paolesse, R. et al. Identification of melanoma with a gas sensor array. Skin Res. Technol. 2008, 14, 226–236.

188

Kwak, J.; Gallagher, M.; Ozdener, M. H.; Wysocki, C. J.; Goldsmith, B. R.; Isamah, A.; Faranda, A.; Fakharzadeh, S. S.; Herlyn, M.; Johnson, A. T. C. et al. Volatile biomarkers from human melanoma cells. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2013, 931, 90–96.

189

Pickel, D.; Manucy, G. P.; Walker, D. B.; Hall, S. B.; Walker, J. C. Evidence for canine olfactory detection of melanoma. Appl. Anim. Behav. Sci. 2004, 89, 107–116.

190

Dormont, L.; Bessière, J. M.; Cohuet, A. Human skin volatiles: A review. J. Chem. Ecol. 2013, 39, 569–578.

191

Barzantny, H.; Schröder, J.; Strotmeier, J.; Fredrich, E.; Brune, I.; Tauch, A. The transcriptional regulatory network of Corynebacterium jeikeium K411 and its interaction with metabolic routes contributing to human body odor formation. J. Biotechnol. 2012, 159, 235–248.

192

Marshall, J.; Holland, K. T.; Gribbon, E. M. A comparative study of the cutaneous microflora of normal feet with low and high levels of odour. J. Appl. Bacteriol. 1988, 65, 61–68.

193

Natsch, A.; Derrer, S.; Flachsmann, F.; Schmid, J. A broad diversity of volatile carboxylic acids, released by a bacterial aminoacylase from axilla secretions, as candidate molecules for the determination of human-body odor type. Chem. Biodivers. 2006, 3, 1–20.

194

De Giovanni, N.; Fucci, N. The current status of sweat testing for drugs of abuse: A review. Curr. Med. Chem. 2013, 20, 545–561.

195

Holmberg, M.; Winquist, F.; Lundström, I.; Gardner, J. W.; Hines, E. L. Identification of paper quality using a hybrid electronic nose. Sens. Actuators B: Chem. 1995, 27, 246–249.

196

Ulmer, H.; Mitrovics, J.; Noetzel, G.; Weimar, U.; Göpel, W. Odours and flavours identified with hybrid modular sensor systems. Sens. Actuators B: Chem. 1997, 43, 24–33.

197

Pardo, M.; Kwong, L. G.; Sberveglieri, G.; Brubaker, K.; Schneider, J. F.; Penrose, W. R.; Stetter, J. R. Data analysis for a hybrid sensor array. Sens. Actuators B: Chem. 2005, 106, 136–143.

198

Li, C. L.; Chen, Y. F.; Liu, M. H.; Lu, C. J. Utilizing diversified properties of monolayer protected gold nano-clusters to construct a hybrid sensor array for organic vapor detection. Sens. Actuators B: Chem. 2012, 169, 349–359.

199

Lu, H. L.; Lu, C. J.; Tian, W. C.; Sheen, H. J. A vapor response mechanism study of surface-modified single-walled carbon nanotubes coated chemiresistors and quartz crystal microbalance sensor arrays. Talanta 2015, 131, 467–474.

200

Zetola, N. M.; Modongo, C.; Matsiri, O.; Tamuhla, T.; Mbongwe, B.; Matlhagela, K.; Sepako, E.; Catini, A.; Sirugo, G.; Martinelli, E. et al. Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples. J. Infect. 2017, 74, 367–376.

201

Cho, Y. S.; Jung, S. C.; Oh, S. Diagnosis of bovine tuberculosis using a metal oxide-based electronic nose. Lett. Appl. Microbiol. 2015, 60, 513–516.

202

Wu, C. S.; Du, L. P.; Wang, D.; Zhao, L. H.; Wang, P. A biomimetic olfactory-based biosensor with high efficiency immobilization of molecular detectors. Biosens. Bioelectron. 2012, 31, 44–48.

203

Chen, X.; Cao, M. F.; Li, Y.; Hu, W. J.; Wang, P.; Ying, K. J.; Pan, H. M. A study of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors array and imaging recognition method. Meas. Sci. Technol. 2005, 16, 1535–1546.

204

Mazzone, P. J.; Hammel, J.; Dweik, R.; Na, J.; Czich, C.; Laskowski, D.; Mekhail, T. Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax 2007, 62, 565–568.

205

Janzen, M. C.; Ponder, J. B.; Bailey, D. P.; Ingison, C. K.; Suslick, K. S. Colorimetric sensor arrays for volatile organic compounds. Anal. Chem. 2006, 78, 3591–3600.

206

Vincent, T. A.; Gardner, J. W. A low cost MEM based NDIR system for the monitoring of carbon dioxide in breath analysis at ppm levels. Sens. Actuators B: Chem. 2016, 236, 954–964.

207

Meng, Z.; Stolz, R. M.; Mendecki, L.; Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 2019, 119, 478–598.

208

Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di Natale, C. Porphyrinoids for chemical sensor applications. Chem. Rev. 2017, 117, 2517–2583.

209

Shehada, N.; Cancilla, J. C.; Torrecilla, J. S.; Pariente, E. S.; Brönstrup, G.; Christiansen, S.; Johnson, D. W.; Leja, M.; Davies, M. P. A.; Liran, O. et al. Silicon nanowire sensors enable diagnosis of patients via exhaled breath. ACS Nano 2016, 10, 7047–7057.

210

Cao, L. A.; Yao, M. S.; Jiang, H. J.; Kitagawa, S.; Ye, X. L.; Li, W. H.; Xu, G. A highly oriented conductive MOF thin film-based Schottky diode for self-powered light and gas detection. J. Mater. Chem. A 2020, 8, 9085–9090.

211

Yuan, H. Y.; Tao, J. F.; Li, N. X.; Karmakar, A.; Tang, C. H.; Cai, H.; Pennycook, S. J.; Singh, N.; Zhao, D. On-chip tailorability of capacitive gas sensors integrated with metal-organic framework films. Angew. Chem., Int. Ed. 2019, 58, 14089–14094.

212

Sun, Z. B.; Yu, S. H.; Zhao, L. L.; Wang, J. F.; Li, Z. F.; Li, G. A highly stable two-dimensional copper (II) organic framework for proton conduction and ammonia impedance sensing. Chem. Eur. J. 2018, 24, 10829–10839.

213

Yao, M. S.; Li, W. H.; Xu, G. Metal-organic frameworks and their derivatives for electrically-transduced gas sensors. Coord. Chem. Rev. 2021, 426, 213479.

214

Pauling, L.; Robinson, A. B.; Teranishi, R.; Cary, P. Quantitative analysis of urine vapor and breath by gas–liquid partition chromatography. Proc. Natl. Acad. Sci. USA 1971, 68, 2374–2376.

215
Amal, H.; Haick, H. Point of care breath analysis systems. In Advanced Nanomaterials for Inexpensive Gas Microsensors. Llobet, E., Ed.; Elsevier: Cambridge, MA, 2020; pp 315–334.https://doi.org/10.1016/B978-0-12-814827-3.00014-1
216

Nakhleh, M. K.; Badarny, S.; Winer, R.; Jeries, R.; Finberg, J.; Haick, H. Distinguishing idiopathic Parkinson’s disease from other parkinsonian syndromes by breath test. Parkinsonism Relat. Disord. 2015, 21, 150–153.

217

Nardi-Agmon, I.; Abud-Hawa, M.; Liran, O.; Gai-Mor, N.; Ilouze, M.; Onn, A.; Bar, J.; Shlomi, D.; Haick, H.; Peled, N. Exhaled breath analysis for monitoring response to treatment in advanced lung cancer. J. Thorac. Oncol. 2016, 11, 827–837.

218

Kim, S. J.; Choi, S. J.; Jang, J. S.; Cho, H. J.; Kim, I. D. Innovative nanosensor for disease diagnosis. Acc. Chem. Res. 2017, 50, 1587–1596.

219

Schuermans, V. N. E.; Li, Z. Y.; Jongen, A. C. H. M.; Wu, Z. Q.; Shi, J. Y.; Ji, J. F.; Bouvy, N. D. Pilot study: Detection of gastric cancer from exhaled air analyzed with an electronic nose in Chinese patients. Surg. Innov. 2018, 25, 429–434.

220

Hanson, C. W. 3rd; Thaler, E. R. Electronic nose prediction of a clinical pneumonia score: Biosensors and microbes. Anesthesiology 2005, 102, 63–68.

221

Kateb, B.; Ryan, M. A.; Homer, M. L.; Lara, L. M.; Yin, Y. F.; Higa, K.; Chen, M. Y. Sniffing out cancer using the JPL electronic nose: A pilot study of a novel approach to detection and differentiation of brain cancer. NeuroImage 2009, 47, T5–T9.

222

Wu, A. Q.; Wang, W. Q.; Zhan, H. B.; Cao, L. A.; Ye, X. L.; Zheng, J. J.; Kumar, P. N.; Chiranjeevulu, K.; Deng, W. H.; Wang, G. E. et al. Layer-by-layer assembled dual-ligand conductive MOF nano-films with modulated chemiresistive sensitivity and selectivity. Nano Res. 2021, 14, 438–443.

223

Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M. Cu3(hexaiminotriphenylene)2: An electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem. 2015, 127, 4423–4426.

224

Stolz, R. M.; Mahdavi-Shakib, A.; Frederick, B. G.; Mirica, K. A. Host-guest interactions and redox activity in layered conductive metal-organic frameworks. Chem. Mater. 2020, 32, 7639–7652.

225

Yao, M. S.; Zheng, J. J.; Wu, A. Q.; Xu, G.; Nagarkar, S. S.; Zhang, G.; Tsujimoto, M.; Sakaki, S.; Horike, S.; Otake, K. et al. A dual-ligand porous coordination polymer chemiresistor with modulated conductivity and porosity. Angew. Chem., Int. Ed. 2020, 59, 172–176.

226

Fan, Y.; Zhang, J.; Shen, Y.; Zheng, B.; Zhang, W. N.; Huo, F. W. Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Res. 2021, 14, 1–28.

227

Donarelli, M.; Ottaviano, L.; Giancaterini, L.; Fioravanti, G.; Perrozzi, F.; Cantalini, C. Exfoliated black phosphorus gas sensing properties at room temperature. 2D Mater. 2016, 3, 025002.

228

Cho, S. Y.; Koh, H. J.; Yoo, H. W.; Jung, H. T. Tunable chemical sensing performance of black phosphorus by controlled functionalization with noble metals. Chem. Mater. 2017, 29, 7197–7205.

229

Yao, M. S.; Otake, K. I.; Xue, Z. Q.; Kitagawa, S. Concluding remarks: Current and next generation MOFs. Faraday Discuss. 2021, 231, 397–417.

230

Yao, M. S.; Wang, P.; Gu, Y. F.; Koganezawa, T.; Ashitani, H.; Kubota, Y.; Wang, Z. M.; Fan, Z. Y.; Otake, K. I.; Kitagawa, S. A comparative study of honeycomb-like 2D π-conjugated metal-organic framework chemiresistors: Conductivity and channels. Dalton Trans. 2021, 50, 13236–13245.

231

Meng, Z.; Stolz, R. M.; Mirica, K. A. Two-dimensional chemiresistive covalent organic framework with high intrinsic conductivity. J. Am. Chem. Soc. 2019, 141, 11929–11937.

232

Zhang, H. H.; Gu, C.; Yao, M. S.; Kitagawa, S. Hybridization of emerging crystalline porous materials: Synthesis dimensionality and electrochemical energy storage application. Adv. Energy Mater. 2022, 12, 2100321.

233

Jian, Y. Y.; Qu, D. Y.; Guo, L. H.; Zhu, Y. J.; Su, C.; Feng, H. R.; Zhang, G. J.; Zhang, J.; Wu, W. W.; Yao, M. S. The prior rules of designing Ti3C2Tx MXene-based gas sensors. Front. Chem. Sci. Eng. 2021, 15, 505–517.

234

Kim, S. J.; Koh, H. J.; Ren, C. E.; Kwon, O.; Maleski, K.; Cho, S. Y.; Anasori, B.; Kim, C. K.; Choi, Y. K.; Kim, J. et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 2018, 12, 986–993.

235

Lee, E.; VahidMohammadi, A.; Prorok, B. C.; Yoon, Y. S.; Beidaghi, M.; Kim, D. J. Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 2017, 9, 37184–37190.

236

Yao, M. S.; Xiu, J. W.; Huang, Q. Q.; Li, W. H.; Wu, W. W.; Wu, A. Q.; Cao, L. A.; Deng, W. H.; Wang, G. E.; Xu, G. Van der Waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing. Angew. Chem., Int. Ed. 2019, 58, 14915–14919.

237

Yao, M. S.; Tang, W. X.; Wang, G. E.; Nath, B.; Xu, G. MOF thin film-coated metal oxide nanowire array: Significantly improved chemiresistor sensor performance. Adv. Mater. 2016, 28, 5229–5234.

238

Lei, G. L.; Lou, C. M.; Liu, X. H.; Xie, J. Y.; Li, Z. S.; Zheng, W.; Zhang, J. Thin films of tungsten oxide materials for advanced gas sensors. Sens. Actuator B: Chem. 2021, 341, 129996.

239

Liu, X. H.; Zheng, W.; Kumar, R.; Kumar, M.; Zhang, J. Conducting polymer-based nanostructures for gas sensors. Coord. Chem. Rev. 2022, 462, 214517.

240

Lou, C. M.; Lei, G. L.; Liu, X. H.; Xie, J. Y.; Li, Z. S.; Zheng, W.; Goel, N.; Kumar, M.; Zhang, J. Design and optimization strategies of metal oxide semiconductor nanostructures for advanced formaldehyde sensors. Coord. Chem. Rev. 2022, 452, 214280.

241

Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831.

242

Liu, X. H.; Ma, T. T.; Pinna, N.; Zhang, J. Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 2017, 27, 1702168.

243

Xu, K.; Fu, C.; Gao, Z.; Wei, F.; Ying, Y.; Xu, C.; Fu, G. Nanomaterial-based gas sensors: A review. Instrum. Sci. Technol. 2018, 46, 115–145.

244

Jin, C. G.; Kurzawski, P.; Hierlemann, A.; Zellers, E. T. Evaluation of multitransducer arrays for the determination of organic vapor mixtures. Anal. Chem. 2008, 80, 227–236.

245

Jin, C. G.; Zellers, E. T. Limits of recognition for binary and ternary vapor mixtures determined with multitransducer arrays. Anal. Chem. 2008, 80, 7283–7293.

246

Gutierrez-Osuna, R.; Hierlemann, A. Adaptive microsensor systems. Annu. Rev. Anal. Chem. 2010, 3, 255–276.

247

Li, Z.; Askim, J. R.; Suslick, K. S. The optoelectronic nose: Colorimetric and fluorometric sensor arrays. Chem. Rev. 2019, 119, 231–292.

248

Zhao, S. X.; Lei, J. C.; Huo, D. Q; Hou, C. J.; Luo, X. G.; Wu, H. X.; Fa, H. B.; Yang, M. A colorimetric detector for lung cancer related volatile organic compounds based on cross-response mechanism. Sens. Actuators B: Chem. 2018, 256, 543–552.

249

Lei, J. C.; Hou, C. J.; Huo, D. Q.; Luo, X. G.; Bao, M. Z.; Li, X.; Yang, M.; Fa, H. B. A novel device based on a fluorescent cross-responsive sensor array for detecting lung cancer related volatile organic compounds. Rev. Sci. Instrum. 2015, 86, 025106.

250

Hou, C. J.; Lei, J. C.; Huo, D. Q.; Song, K.; Li, J. J.; Luo, X. G.; Yang, M.; Fa, H. B. Discrimination of lung cancer related volatile organic compounds with a colorimetric sensor array. Anal. Lett. 2013, 46, 2048–2059.

251

Huo, D. Q.; Xu, Y. H.; Hou, C. J.; Yang, M.; Fa, H. B. A novel optical chemical sensor based AuNR-MTPP and dyes for lung cancer biomarkers in exhaled breath identification. Sens. Actuators B: Chem. 2014, 199, 446–456.

Nano Research
Pages 8185-8213
Cite this article:
Hu W, Wu W, Jian Y, et al. Volatolomics in healthcare and its advanced detection technology. Nano Research, 2022, 15(9): 8185-8213. https://doi.org/10.1007/s12274-022-4459-3
Topics:

1552

Views

47

Crossref

41

Web of Science

42

Scopus

2

CSCD

Altmetrics

Received: 31 March 2022
Revised: 18 April 2022
Accepted: 20 April 2022
Published: 29 June 2022
© Tsinghua University Press 2022
Return