AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Efficiently band-tailored type-III van der Waals heterostructure for tunnel diodes and optoelectronic devices

Xiangna Cong1,2Yue Zheng1Fu Huang1Qi You1Jian Tang1Feier Fang1Ke Jiang1Cheng Han1( )Yumeng Shi1
International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics & Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Show Author Information

Graphical Abstract

Here, an efficient control of energy band alignment in a typical broken-gap (type-III) van der Waals heterostructure (vdWH) composed of vertically-stacked molybdenum telluride (MoTe2) and tin diselenide (SnSe2), was achieved via both single electrostatic gating using hexagonal boron nitride (h-BN) as dielectric and optical modulation. This leads to the realization of a series of tunnel diodes at low gate voltages (±1 V) and optoelectronic devices with competitive performance.

Abstract

Broken-gap (type-III) two-dimensional (2D) van der Waals heterostructures (vdWHs) offer an ideal platform for interband tunneling devices due to their broken-gap band offset and sharp band edge. Here, we demonstrate an efficient control of energy band alignment in a typical type-III vdWH, which is composed of vertically-stacked molybdenum telluride (MoTe2) and tin diselenide (SnSe2), via both electrostatic and optical modulation. By a single electrostatic gating with hexagonal boron nitride (h-BN) as the dielectric, a variety of electrical transport characteristics including forward rectifying, Zener tunneling, and backward rectifying are realized on the same heterojunction at low gate voltages of ±1 V. In particular, the heterostructure can function as an Esaki tunnel diode with a room-temperature negative differential resistance. This great tunability originates from the atomically-flat and inert surface of h-BN that significantly suppresses the interfacial trap scattering and strain effects. Upon the illumination of an 885 nm laser, the band alignment of heterojunction can be further tuned to facilitate the direct tunneling of photogenerated charge carriers, which leads to a high photocurrent on/off ratio of > 10 5 and a competitive photodetectivity of 1.03 × 1012 Jones at zero bias. Moreover, the open-circuit voltage of irradiated heterojunction can be switched from positive to negative at opposite gate voltages, revealing a transition from accumulation mode to depletion mode. Our findings not only promise a simple strategy to tailor the bands of type-III vdWHs but also provide an in-depth understanding of interlayer tunneling for future low-power electronic and optoelectronic applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4463_MOESM1_ESM.pdf (958.9 KB)

References

1

Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681.

2

Liang, S. J.; Cheng, B.; Cui, X. Y.; Miao, F. van der Waals heterostructures for high-performance device applications: Challenges and opportunities. Adv. Mater. 2020, 32, 1903800.

3

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

4

Cheng, R. Q.; Wang, F.; Yin, L.; Wang, Z. X.; Wen, Y.; Shifa, T. A.; He, J. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron. 2018, 1, 356–361.

5

Balaji, Y.; Smets, Q.; De La Rosa, C. J. L.; Lu, A. K. A.; Chiappe, D.; Agarwal, T.; Lin, D. H. C.; Huyghebaert, C.; Radu, I.; Mocuta, D. et al. Tunneling transistors based on MoS2/MoTe2 van der Waals heterostructures. IEEE J. Electron Devices Soc. 2018, 6, 1048–1055.

6

Ma, Q.; Andersen, T. I.; Nair, N. L.; Gabor, N. M.; Massicotte, M.; Lui, C. H.; Young, A. F.; Fang, W. J.; Watanabe, K.; Taniguchi, T. et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys. 2016, 12, 455–459.

7

Balaji, Y.; Smets, Q.; Śzabo, Á.; Mascaro, M.; Lin, D.; Asselberghs, I.; Radu, I.; Luisier, M.; Groeseneken, G. MoS2/MoTe2 heterostructure tunnel FETs using gated Schottky contacts. Adv. Funct. Mater. 2020, 30, 1905970.

8

Huang, M. Q.; Li, S. M.; Zhang, Z. F.; Xiong, X.; Li, X. F.; Wu, Y. Q. Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol. 2017, 12, 1148–1154.

9

Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100–103.

10

Yu, W. J.; Li, Z.; Zhou, H. L.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X. F. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 2013, 12, 246–252.

11

Liu, C. S.; Yan, X.; Song, X. F.; Ding, S. J.; Zhang, D. W.; Zhou, P. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 2018, 13, 404–410.

12

Bertolazzi, S.; Krasnozhon, D.; Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 2013, 7, 3246–3252.

13

Vu, Q. A.; Shin, Y. S.; Kim, Y. R.; Nguyen, V. L.; Kang, W. T.; Kim, H.; Luong, D. H.; Lee, I. M.; Lee, K.; Ko, D. S. et al. Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 2016, 7, 12725.

14

Kang, B.; Kim, Y.; Yoo, W. J.; Lee, C. Ultrahigh photoresponsive device based on ReS2/graphene heterostructure. Small 2018, 14, 1802593.

15

Yu, W. Z.; Li, S. J.; Zhang, Y. P.; Ma, W. L.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. L. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 2017, 13, 1700268.

16

Lu, Z. J.; Xu, Y.; Yu, Y. Q.; Xu, K. W.; Mao, J.; Xu, G. B.; Ma, Y. M.; Wu, D.; Jie, J. S. Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater. 2020, 30, 1907951.

17

Wang, F. K.; Luo, P.; Zhang, Y.; Huang, Y.; Zhang, Q. F.; Li, Y.; Zhai, T. Y. Band structure engineered tunneling heterostructures for high-performance visible and near-infrared photodetection. Sci. China Mater. 2020, 63, 1537–1547.

18

Lv, L.; Zhuge, F. W.; Xie, F. J.; Xiong, X. J.; Zhang, Q. F.; Zhang, N.; Huang Y.; Zhai, T. Y. Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nat. Commun. 2019, 10, 3331.

19

Liu, R.; Wang, F. K.; Liu, L. X.; He, X. Y.; Chen, J. Z.; Li, Y.; Zhai, T. Y. Band alignment engineering in two-dimensional transition metal dichalcogenide-based heterostructures for photodetectors. Small Structures 2021, 2, 2000136.

20

Pezeshki, A.; Shokouh, S. H. H.; Nazari, T.; Oh, K.; Im, S. Electric and photovoltaic behavior of a few-layer α-MoTe2/MoS2 dichalcogenide heterojunction. Adv. Mater. 2016, 28, 3216–3222.

21

Hu, S. Q.; Xu, J. P.; Zhao, Q. H.; Luo, X. G.; Zhang, X. T.; Wang, T.; Jie, W. Q.; Cheng, Y. C.; Frisenda, R.; Castellanos-Gomez, A. et al. Gate-switchable photovoltaic effect in BP/MoTe2 van der Waals heterojunctions for self-driven logic optoelectronics. Adv. Opt. Mater. 2021, 9, 2001802.

22

Chen, Y.; Wang, X. D.; Wu, G. J.; Wang, Z.; Fang, H. H.; Lin, T.; Sun, S.; Shen, H.; Hu, W. D.; Wang, J. L. et al. High-performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small 2018, 14, 1703293.

23

Long, M. S.; Liu, E. R.; Wang, P.; Gao, A. Y.; Xia, H.; Luo, W.; Wang, B. G.; Zeng, J. W.; Fu, Y. J.; Xu, K. et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 2016, 16, 2254–2259.

24

Bastonero, L.; Cicero, G.; Palummo, M.; Re Fiorentin, M. Boosted solar light absorbance in PdS2/PtS2 vertical heterostructures for ultrathin photovoltaic devices. ACS Appl. Mater. Interfaces 2021, 13, 43615–43621.

25

Yan, R. S.; Fathipour, S.; Han, Y. M.; Song, B.; Xiao, S. D.; Li, M. D.; Ma, N.; Protasenko, V.; Muller, D. A.; Jena, D. et al. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 2015, 15, 5791–5798.

26

Chen, W. J.; Liang, R. R.; Zhang, S. Q.; Liu, Y.; Cheng, W. J.; Sun, C. C.; Xu, J. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure. Nano Res. 2020, 13, 127–132.

27

Furchi, M. M.; Pospischil, A.; Libisch, F.; Burgdörfer, J.; Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 2014, 14, 4785–4791.

28

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

29

Na, J.; Kim, Y.; Smet, J. H.; Burghard, M.; Kern, K. Gate-tunable tunneling transistor based on a thin black phosphorus–SnSe2 heterostructure. ACS Appl. Mater. Interfaces 2019, 11, 20973–20978.

30

Tan, C. Y.; Yin, S. Q.; Chen, J. W.; Lu, Y.; Wei, W. S.; Du, H. F.; Liu, K. L.; Wang, F. K.; Zhai, T. Y.; Li, L. Broken-gap PtS2/WSe2 van der Waals heterojunction with ultrahigh reverse rectification and fast photoresponse. ACS Nano 2021, 15, 8328–8337.

31

Lv, Q. S.; Yan, F. G.; Mori, N.; Zhu, W. K.; Hu, C.; Kudrynskyi, Z. R.; Kovalyuk, Z. D.; Patanè, A.; Wang, K. Y. Interlayer band-to-band tunneling and negative differential resistance in van der Waals BP/InSe field-effect transistors. Adv. Funct. Mater. 2020, 30, 1910713.

32

Liu, X. C.; Qu, D. S.; Li, H. M.; Moon, I.; Ahmed, F.; Kim, C.; Lee, M.; Choi, Y.; Cho, J. H.; Hone, J. C. et al. Modulation of quantum tunneling via a vertical two-dimensional black phosphorus and molybdenum disulfide p–n junction. ACS Nano 2017, 11, 9143–9150.

33

Duong, N. T.; Lee, J.; Bang, S.; Park, C.; Lim, S. C.; Jeong, M. S. Modulating the functions of MoS2/MoTe2 van der Waals heterostructure via thickness variation. ACS Nano 2019, 13, 4478–4485.

34

Nourbakhsh, A.; Zubair, A.; Dresselhaus, M. S.; Palacios, T. Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett. 2016, 16, 1359–1366.

35

Wang, Y. N.; Xiang, D.; Zheng, Y.; Liu, T.; Ye, X.; Gao, J.; Yang, H.; Han, C.; Chen, W. van der Waals heterostructures with tunable tunneling behavior enabled by MoO3 surface functionalization. Adv. Opt. Mater. 2020, 8, 1901867.

36

Fan, S. D.; Yun, S. J.; Yu, W. J.; Lee, Y. H. Tailoring quantum tunneling in a vanadium-doped WSe2/SnSe2 heterostructure. Adv. Sci. 2020, 7, 1902751.

37

Jiang, X. X.; Shi, X. Y.; Zhang, M.; Wang, Y. R.; Gu, Z. H.; Chen, L.; Zhu, H.; Zhang, K.; Sun, Q. Q.; Zhang, D. W. A symmetric tunnel field-effect transistor based on MoS2/black phosphorus/MoS2 nanolayered heterostructures. ACS Appl. Nano Mater. 2019, 2, 5674–5680.

38

Roy, T.; Tosun, M.; Cao, X.; Fang, H.; Lien, D. H.; Zhao, P. D.; Chen, Y. Z.; Chueh, Y. L.; Guo, J.; Javey, A. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 2015, 9, 2071–2079.

39

Murali, K.; Dandu, M.; Das, S.; Majumdar, K. Gate-tunable WSe2/SnSe2 backward diode with ultrahigh-reverse rectification ratio. ACS Appl. Mater. Interfaces 2018, 10, 5657–5664.

40

Yan, X.; Liu, C. S.; Li, C.; Bao, W. Z.; Ding, S. J.; Zhang, D. W.; Zhou, P. Tunable SnSe2/WSe2 heterostructure tunneling field effect transistor. Small 2017, 13, 1701478.

41

Lee, J.; Duong, N. T.; Bang, S.; Park, C.; Nguyen, D. A.; Jeon, H.; Jang, J.; Oh, H. M.; Jeong, M. S. Modulation of junction modes in SnSe2/MoTe2 broken-gap van der Waals heterostructure for multifunctional devices. Nano Lett. 2020, 20, 2370–2377.

42

Fan, S. D.; Vu, Q. A.; Lee, S.; Phan, T. L.; Han, G.; Kim, Y. M.; Yu, W. J.; Lee, Y. H. Tunable negative differential resistance in van der Waals heterostructures at room temperature by tailoring the interface. ACS Nano 2019, 13, 8193–8201.

43

Li, C.; Yan, X.; Song, X. F.; Bao, W. Z.; Ding, S. J.; Zhang, D. W.; Zhou, P. WSe2/MoS2 and MoTe2/SnSe2 van der Waals heterostructure transistors with different band alignment. Nanotechnology 2017, 28, 415201.

44

Jin, N.; Yu, R. H.; Chung, S. Y.; Berger, P. R.; Thompson, P. E.; Fay, P. High sensitivity Si-based backward diodes for zero-biased square-law detection and the effect of post-growth annealing on performance. IEEE Electron Device Lett. 2005, 26, 575–578.

45

Park, S. Y.; Yu, R.; Chung, S. Y.; Berger, P. R.; Thompson, P. E.; Fay, P. Sensitivity of Si-based zero-bias backward diodes for microwave detection. Electron. Lett. 2007, 43, 295–296.

46

DeRose, C. T.; Trotter, D. C.; Zortman, W. A.; Starbuck, A. L.; Fisher, M.; Watts, M. R.; Davids, P. S. Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. Opt. Express 2011, 19, 24897–24904.

47

Alekseev, E.; Pavlidis, D. Large-signal microwave performance of GaN-based NDR diode oscillators. Solid State Electron. 2000, 44, 941–947.

48

Abraham, N.; Murali, K.; Watanabe, K.; Taniguchi, T.; Majumdar, K. Astability versus bistability in van der Waals tunnel diode for voltage controlled oscillator and memory applications. ACS Nano 2020, 14, 15678–15687.

49

Munsterman, G. T. Tunnel-diode microwave amplifiers. APL Technol. Dig. 1965, 4, 2–10.

50

Shim, J.; Oh, S.; Kang, D. H.; Jo, S. H.; Ali, M. H.; Choi, W. Y.; Heo, K.; Jeon, J.; Lee, S.; Kim, M. et al. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat. Commun. 2016, 7, 13413.

51

Jeon, J.; Kim, M. J.; Shin, G.; Lee, M.; Kim, Y. J.; Kim, B.; Lee, Y.; Cho, J. H.; Lee, S. Functionalized organic material platform for realization of ternary logic circuit. ACS Appl. Mater. Interfaces 2020, 12, 6119–6126.

52

Brivio, J.; Alexander, D. T. L.; Kis, A. Ripples and layers in ultrathin MoS2 membranes. Nano Lett. 2011, 11, 5148–5153.

53

Jena, D. Tunneling transistors based on graphene and 2-D crystals. Proc. IEEE 2013, 101, 1585–1602.

54

Srivastava, P. K.; Hassan, Y.; Gebredingle, Y.; Jung, J.; Kang, B.; Yoo, W. J.; Singh, B.; Lee, C. Van der Waals broken-gap p–n heterojunction tunnel diode based on black phosphorus and rhenium disulfide. ACS Appl. Mater. Interfaces 2019, 11, 8266–8275.

55

Qin, F. L.; Gao, F.; Dai, M. J.; Hu, Y. X.; Yu, M.; Wang, L.; Feng, W.; Li, B.; Hu, P. Multilayer InSe–Te van der Waals heterostructures with an ultrahigh rectification ratio and ultrasensitive photoresponse. ACS Appl. Mater. Interfaces 2020, 12, 37313–37319.

56

Kim, Y. R.; Phan, T. L.; Shin, Y. S.; Kang, W. T.; Won, U. Y.; Lee, I.; Kim, J. E.; Kim, K.; Lee, Y. H.; Yu, W. J. Unveiling the hot carrier distribution in vertical graphene/h-BN/Au van der Waals heterostructures for high-performance photodetector. ACS Appl. Mater. Interfaces 2020, 12, 10772–10780.

57

Wang, Q. S.; Wen, Y.; He, P.; Yin, L.; Wang, Z. X.; Wang, F.; Xu, K.; Huang, Y.; Wang, F. M.; Jiang, C. et al. High-performance phototransistor of epitaxial PbS nanoplate–graphene heterostructure with edge contact. Adv. Mater. 2016, 28, 6497–6503.

58

Wen, Y.; Yin, L.; He, P.; Wang, Z. X.; Zhang, X. K.; Wang, Q. S.; Shifa, T. A.; Xu, K.; Wang, F. M.; Zhan, X. Y. et al. Integrated high-performance infrared phototransistor arrays composed of nonlayered PbS–MoS2 heterostructures with edge contacts. Nano Lett. 2016, 16, 6437–6444.

59

Yu, M. M.; Hu, Y. X.; Gao, F.; Dai, M. J.; Wang, L. F.; Hu, P. A.; Feng, W. High-performance devices based on InSe–In1−xGaxSe van der Waals heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 24978–24983.

60

Zhou, X.; Hu, X. Z.; Zhou, S. S.; Song, H. Y.; Zhang, Q.; Pi, L. J.; Li, L.; Li, H. Q.; Lü, J. T.; Zhai, T. Y. Tunneling diode based on WSe2/SnS2 heterostructure incorporating high detectivity and responsivity. Adv. Mater. 2018, 30, 1703286.

61

Li, A. L.; Chen, Q. X.; Wang, P. P.; Gan, Y.; Qi, T. L.; Wang, P.; Tang, F. D.; Wu, J. Z.; Chen, R.; Zhang, L. Y. et al. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/Graphene/SnS2 p–g–n junctions. Adv. Mater. 2019, 31, 1805656.

62

Wang, Z. X.; Wang, F.; Yin, L.; Huang, Y.; Xu, K.; Wang, F. M.; Zhan, X. Y.; He, J. Electrostatically tunable lateral MoTe2 p–n junction for use in high-performance optoelectronics. Nanoscale 2016, 8, 13245–13250.

63
Farzami, F.; Khaledian, S.; Smida, B.; Erricolo, D. Ultra-low power reflection amplifier using tunnel diode for RFID applications. In Proceedings of 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 2017, pp 2511–2512.https://doi.org/10.1109/APUSNCURSINRSM.2017.8073298
64

Park, C.; Duong, N. T.; Bang, S.; Nguyen, D. A.; Oh, H. M.; Jeong, M. S. Photovoltaic effect in a few-layer ReS2/WSe2 heterostructure. Nanoscale 2018, 10, 20306–20312.

Nano Research
Pages 8442-8450
Cite this article:
Cong X, Zheng Y, Huang F, et al. Efficiently band-tailored type-III van der Waals heterostructure for tunnel diodes and optoelectronic devices. Nano Research, 2022, 15(9): 8442-8450. https://doi.org/10.1007/s12274-022-4463-7
Topics:

1855

Views

26

Crossref

25

Web of Science

24

Scopus

0

CSCD

Altmetrics

Received: 16 February 2022
Revised: 06 April 2022
Accepted: 22 April 2022
Published: 20 June 2022
© Tsinghua University Press 2022
Return