AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Two birds with one stone: Amine-functionalized MSNs@Eu(OH)CO3 nanoprobe for efficient dissolution-enhanced afterglow bioassay

Fuying ZhangDonghao HuXianlong SuZhengdao HongWei FengMing Xu( )Fuyou Li( )
Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Institute of Biomedicine Science, Fudan University, Shanghai 200433, China
Show Author Information

Graphical Abstract

We propose a unique “two birds with one stone” dissolution-enhanced afterglow luminescent bioassay for efficient detection of alpha-fetoprotein (AFP).

Abstract

The efficient detection of tumor markers is crucial to early cancer diagnosis and monitoring. Here, we propose a unique “two birds with one stone” dissolution-enhanced afterglow bioassay based on amino-functionalized mesoporous SiO2 nanoparticles (MSNs-NH2) encapsulated Eu(OH)CO3 nanoprobes. These nanoprobes (i) stably conjugate to the antibody and (ii) are highly soluble in the acidic enhancer solution, and provide a high Eu3+ concentration. The released Eu3+ ions further activate the photochemical afterglow system to determine the alpha-fetoprotein (AFP) levels in clinical serum samples. Without the use of a real-time excitation source, the interference of autofluorescence and scattering from blood can be avoided. The demonstrated limit of detection (LOD) for AFP was as low as 0.12 ng·mL−1. This covalently connected dissolution-enhanced luminescent bioassay (DELBA) and novel afterglow system shows tremendous potential for ultrasensitive and rapid clinical diagnosis.

Electronic Supplementary Material

Download File(s)
12274_2022_4464_MOESM1_ESM.pdf (1.5 MB)

References

1

Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D. M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789.

2

Sturgeon, C. Practice guidelines for tumor marker use in the clinic. Clin. Chem. 2002, 48, 1151–1159.

3

Popat, S.; Houlston, R. S. Re: Reporting recommendations for tumor marker prognostic studies (REMARK). J. Natl. Cancer Inst. 2005, 97, 1855.

4

Zheng, W.; Zhou, S. Y.; Xu, J.; Liu, Y. S.; Huang, P.; Liu, Y.; Chen, X. Y. Ultrasensitive luminescent in vitro detection for tumor markers based on inorganic lanthanide nano-bioprobes. Adv. Sci. 2016, 3, 1600197.

5

Qin, L. X.; Tang, Z. Y. Recent progress in predictive biomarkers for metastatic recurrence of human hepatocellular carcinoma: A review of the literature. J. Cancer Res. Clin. Oncol. 2004, 130, 497–513.

6

Han, Z. Z.; Luo, M.; Chen, L.; Chen, J. H.; Li, C. Y. A photoelectrochemical immunosensor for detection of α-fetoprotein based on Au-ZnO flower-rod heterostructures. Appl. Surf. Sci. 2017, 402, 429–435.

7

Sha, H. F.; Wang, Y. F.; Zhang, Y.; Ke, H.; Xiong, X.; Jia, N. Q. Enzyme-free ECL immunesensor based on PbS nanocrystals for highly sensitive detection of alpha fetoprotein. Sens. Actuator B:Chem. 2018, 277, 157–163.

8

Zhu, Y.; Zhang, Q.; Li, X.; Pan, H. L.; Wang, J. T.; Zhao, Z. J. Detection of AFP with an ultra-sensitive giant magnetoimpedance biosensor. Sens. Actuator B:Chem. 2019, 293, 53–58.

9

Diamandis, E. P. Immunoassays with time-resolved fluorescence spectroscopy: Principles and applications. Clin. Biochem. 1988, 21, 139–150.

10

Lequin, R. M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 2005, 51, 2415–2418.

11

Zhao, L. X.; Sun, L.; Chu, X. G. Chemiluminescence immunoassay. TrAC Trends Anal. Chem. 2009, 28, 404–415.

12

Zhou, S. Y.; Zheng, W.; Chen, Z.; Tu, D. T.; Liu, Y. S.; Ma, E.; Li, R. F.; Zhu, H. M.; Huang, M. D.; Chen, X. Y. Dissolution-enhanced luminescent bioassay based on inorganic lanthanide nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 12498–12502.

13

Xu, J.; Zhou, S. Y.; Tu, D. T.; Zheng, W.; Huang, P.; Li, R. F.; Chen, Z.; Huang, M. D.; Chen, X. Y. Sub-5 nm lanthanide-doped lutetium oxyfluoride nanoprobes for ultrasensitive detection of prostate specific antigen. Chem. Sci. 2016, 7, 2572–2578.

14
In vitro upconverting/downshifting luminescent detection of tumor markers based on Eu3+-activated core−shell−shell lanthanide nanoprobes Chem. Sci. 2016 7 5013 5019 10.1039/c6sc01195k

Liu, Y. S.; Zhou, S. Y.; Zhuo, Z.; Li, R. F.; Chen, Z.; Hong, M. C.; Chen, X. Y. In vitro upconverting/downshifting luminescent detection of tumor markers based on Eu3+-activated core−shell−shell lanthanide nanoprobes. Chem. Sci. 2016, 7, 5013–5019.

15

Zhang, C. C.; Zhang, H.; Yu, Y. Y.; Wu, S.; Chen, F. Ratio fluorometric determination of ATP base on the reversion of fluorescence of calcein quenched by Eu(III) ion using carbon dots as reference. Talanta 2019, 197, 451–456.

16

Zhao, H. X.; Liu, L. Q.; Liu, Z. D.; Wang, Y.; Zhao, X. J.; Huang, C. Z. Highly selective detection of phosphate in very complicated matrixes with an off−on fluorescent probe of europium-adjusted carbon dots. Chem. Commun. 2011, 47, 2604–2606.

17

Samy, R.; Faustino, P. J.; Adams, W.; Yu, L.; Khan, M. A.; Yang, Y. S. Development and validation of an ion chromatography method for the determination of phosphate-binding of lanthanum carbonate. J. Pharm. Biomed. Anal. 2010, 51, 1108–1112.

18

Shen, D. K.; Yang, J. P.; Li, X. M.; Zhou, L.; Zhang, R. Y.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Y. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014, 14, 923–932.

19

Abbaraju, P. L.; Meka, A. K.; Song, H.; Yang, Y. N.; Jambhrunkar, M.; Zhang, J.; Xu, C.; Yu, M. H.; Yu, C. Z. Asymmetric silica nanoparticles with tunable head-tail structures enhance hemocompatibility and maturation of immune cells. J. Am. Chem. Soc. 2017, 139, 6321–6328.

20

Yang, H. Y.; Lu, X.; Xin, Z. One-step synthesis of nonspherical organosilica particles with tunable morphology. Langmuir 2018, 34, 11723–11728.

21

Nairi, V.; Medda, S.; Piludu, M.; Casula, M. F.; Vallet-Regì, M.; Monduzzi, M.; Salis, A. Interactions between bovine serum albumin and mesoporous silica nanoparticles functionalized with biopolymers. Chem. Eng. J. 2018, 340, 42–50.

22

Huang, L.; Liao, T.; Wang, J.; Ao, L. J.; Su, W.; Hu, J. Brilliant pitaya-type silica colloids with central-radial and high-density quantum dots incorporation for ultrasensitive fluorescence immunoassays. Adv. Funct. Mater. 2018, 28, 1705380.

23

Wang, J.; Liu, X. Y.; Huang, L.; Jin, J. N.; Jiang, C. X.; Li, D. Q.; Wen, H. M.; Hu, J. Controllable and robust dual-emissive quantum dot nanohybrids as inner filter-based ratiometric probes for visualizable melamine detection. Nanoscale 2020, 12, 4562–4572.

24
In vivo gastrointestinal  drug-release  monitoring  through  second  near-infrared  window  fluorescent  bioimaging  with  orally  delivered microcarriers  Nat. Commun. 2017 8 14702 10.1038/ncomms14702

Wang, R.; Zhou, L.; Wang, W. X.; Li, X. M.; Zhang, F. In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat. Commun. 2017, 8, 14702.

25

Yang, G. B.; Gong, H.; Qian, X. X.; Tan, P. L.; Li, Z. W.; Liu, T.; Liu, J. J.; Li, Y. Y.; Liu, Z. Mesoporous silica nanorods intrinsically doped with photosensitizers as a multifunctional drug carrier for combination therapy of cancer. Nano Res. 2015, 8, 751–764.

26

Du, X.; Shi, B. Y.; Tang, Y. H.; Dai, S.; Qiao, S. Z. Label-free dendrimer-like silica nanohybrids for traceable and controlled gene delivery. Biomaterials 2014, 35, 5580–5590.

27

Du, X.; Shi, B. Y.; Liang, J.; Bi, J. X.; Dai, S.; Qiao, S. Z. Developing functionalized dendrimer-like silica nanoparticles with hierarchical pores as advanced delivery nanocarriers. Adv. Mater. 2013, 25, 5981–5985.

28

Dai, F.; Yi, R.; Gordin, M. L.; Chen, S. R.; Wang, D. H. Amorphous Si/SiOx/SiO2 nanocomposites via facile scalable synthesis as anode materials for Li-ion batteries with long cycling life. RSC Adv. 2012, 2, 12710–12713.

29

Zhang, F. R.; Shen, B. W.; Jiang, W. X.; Yuan, H.; Zhou, H. Hydrolysis extraction of diosgenin from Dioscorea nipponica Makino by sulfonated magnetic solid composites. J. Nanopart. Res. 2019, 21, 269.

30

Lechevallier, S.; Lecante, P.; Mauricot, R.; Dexpert, H.; Dexpert-Ghys, J.; Kong, H. K.; Law, G. L.; Wong, K. L. Gadolinium-europium carbonate particles: Controlled precipitation for luminescent biolabeling. Chem. Mater. 2010, 22, 6153–6161.

31

Autthawong, T.; Namsar, O.; Yu, A. S.; Sarakonsri, T. Cost-effective production of SiO2/C and Si/C composites derived from rice husk for advanced lithium-ion battery anodes. J. Mater. Sci.: Mater. Electron. 2020, 31, 9126–9132.

32

Hemmilä, I.; Dakubu, S.; Mukkala, V. M.; Siitari, H.; Lövgren, T. Europium as a label in time-resolved immunofluorometric assays. Anal. Biochem. 1984, 137, 335–343.

33
PAPP-A and free β-hCG stability in first trimester serumusing  PerkinElmer  AutoDELFIA® and  DELFIA® Xpress  systems Prenat. Diagn. 2010 30 117898 10.1002/pd.2423

Cowans, N. J.; Stamatopoulou, A.; Hellström, J.; Mäkelä, M. M.; Spencer, K. PAPP-A and free β-hCG stability in first trimester serum using PerkinElmer AutoDELFIA® and DELFIA® Xpress systems. Prenat. Diagn. 2010, 30, 117898.

34

da Silva, A. C. P.; de Freitas, C. F.; Cardinali, C. A. E. F.; Braga, T. L.; Caetano, W.; Ravanelli, M. I. B.; Hioka, N.; Tessaro, A. L. Biotin-functionalized silica nanoparticles loaded with erythrosine B asselective photodynamic treatment for glioblastoma multiforme. J. Mol. Liq. 2022, 345, 117898.

35

Yang, D. D.; Wei, K. W.; Liu, Q.; Yang, Y.; Guo, X.; Rong, H. R.; Cheng, M. L.; Wang, G. X. Folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell composite particles: Synthesis and application in drug release. Mater. Sci. Eng. C 2013, 33, 2879–2884.

Nano Research
Pages 8360-8366
Cite this article:
Zhang F, Hu D, Su X, et al. Two birds with one stone: Amine-functionalized MSNs@Eu(OH)CO3 nanoprobe for efficient dissolution-enhanced afterglow bioassay. Nano Research, 2022, 15(9): 8360-8366. https://doi.org/10.1007/s12274-022-4464-6
Topics:

1171

Views

9

Crossref

7

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 03 March 2022
Revised: 02 April 2022
Accepted: 22 April 2022
Published: 06 July 2022
© Tsinghua University Press 2022
Return