AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Magnetic-dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2nanocomposites with tunable and strong wideband microwave absorption

Chen Li1Xiaosi Qi1,2( )Xiu Gong1Qiong Peng1Yanli Chen1Ren Xie1Wei Zhong2( )
College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang 550025, China
National Laboratory of Solid State Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093, China
Show Author Information

Graphical Abstract

To exploit the interface engineering and magnetic-dielectric synergy, we have elaborately designed CoNi@void@C and CoNi@void@C@MoS2 magnetic nanocomposites with yolk–shell structure. By effectively tuning the contents of MoS2, excellent microwave absorption properties can be obtained in different frequency regions.

Abstract

In order to effectively utilize the magnetic-dielectric synergy and interfacial engineering, in this paper, yolk–shell structured magnetic multicomponent nanocomposites (MCNCs) including CoNi@void@C and CoNi@void@C@MoS2 were produced in large scale by in-situ pyrolysis of cubic CoNi Prussian blue analogs (PBAs) followed by the hydrothermal process, respectively. Because of their unique structures, excellent synergistic effect between dielectric and magnetic loss, the as-prepared CoNi@void@C and CoNi@void@C@MoS2 MCNCs displayed very outstanding electromagnetic wave absorption performances (EMWAPs) including strong absorption capabilities, broad absorption bandwidth and thin matching thicknesses. Furthermore, the as-prepared CoNi@void@C and CoNi@void@C@MoS2 MCNCs well maintained the cubic configuration of CoNi PBAs even after the thermal treatment and hydrothermal processes. The unique structure and formed carbon layers effectively prevented the corrosion of internal CoNi alloy during the formation of MoS2, and CoNi@void@C@MoS2 MCNCs with different MoS2 contents could be synthesized by controlling the hydrothermal temperature. The obtained results revealed that the EM parameters, dielectric and magnetic loss capabilities of CoNi@void@C@MoS2 MCNCs could be tuned by controlling hydrothermal temperature and filler loading, which made their outstanding EMWAPs could be achieved in different frequency regions. Taking account of simple process, low density and high chemical stability, our findings provided a new and effective pathway to develop the strong wideband microwave absorbers.

Electronic Supplementary Material

Download File(s)
12274_2022_4468_MOESM1_ESM.pdf (823.5 KB)

References

1

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

2

Zeng, X. J.; Cheng, X. Y.; Yu, R. H.; Stucky, G. D. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 2020, 168, 606–623.

3

Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

4

Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

5

Wang, J. W.; Jia, Z. R.; Liu, X. H.; Dou, J. L.; Xu, B. H.; Wang, B. B.; Wu, G. L. Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 2021, 13, 175.

6

Lyu, L. F.; Wang, F. L.; Zhang, X.; Qiao, J.; Liu, C.; Liu, J. R. CuNi alloy/ carbon foam nanohybrids as high-performance electromagnetic wave absorbers. Carbon 2021, 172, 488–496.

7

Liu, J. L.; Zhang, L. M.; Zang, D. Y.; Wu, H. J. A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 2021, 31, 2105018.

8

Hou, T. Q.; Jia, Z. R.; Dong, Y. H.; Liu, X. H.; Wu, G. L. Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 133919.

9

Yang, X. F.; Fan, B. X.; Tang, X.; Wang, J. L.; Tong, G. X.; Chen, D. B.; Guan, J. G. Interface modulation of chiral PPy/Fe3O4 planar microhelixes to achieve electric/magnetic-coupling and wide-band microwave absorption. Chem. Eng. J. 2022, 430, 132747.

10

Wen, B.; Yang, H. B.; Lin, Y.; Qiu, Y.; Cheng, Y.; Jin, L. X. Novel bimetallic MOF derived hierarchical Co@C composites modified with carbon nanotubes and its excellent electromagnetic wave absorption properties. J. Colloid Interface Sci. 2022, 605, 657–666.

11
Wang, H. Y. ; Sun, X. B. ; Yang, S. H. ; Zhao, P. Y. ; Zhang, X. J. ; Wang, G. S. ; Huang, Y. 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 2021, 13, 206.https://doi.org/10.1007/s40820-021-00727-y
12

Li, H.; Bao, S. S.; Li, Y. M.; Huang, Y. Q.; Chen, J. Y.; Zhao, H.; Jiang, Z. Y.; Kuang, Q.; Xie, Z. X. Optimizing the electromagnetic wave absorption performances of designed Co3Fe7@C yolk-shell structures. ACS Appl. Mater. Interfaces 2018, 10, 28839–28849.

13

Ning, M. Q.; Lei, Z. K.; Tan, G. G.; Man, Q. K.; Li, J. B.; Li, R. W. Dumbbell-like Fe3O4@N-doped carbon@2H/1T-MoS2 with tailored magnetic and dielectric loss for efficient microwave absorbing. ACS Appl. Mater. Interfaces 2021, 13, 47061–47071.

14

Zhang, X. C.; Zhang, X.; Yuan, H. R.; Li, K. Y.; Ouyang, Q. Y.; Zhu, C. L.; Zhang, S.; Chen, Y. J. CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123208.

15

Wang, L.; Bai, X. Y.; Wen, B.; Du, Z.; Lin, Y. Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber. Compos. Part B Eng. 2019, 166, 464–471.

16

Liu, L.; He, N.; Wu, T.; Hu, P. B.; Tong, G. X. Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem. Eng. J. 2019, 355, 103–108.

17

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

18

Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

19

Lin, L. S.; Song, J. B.; Yang, H. H.; Chen, X. Y. Yolk-shell nanostructures: Design, synthesis, and biomedical applications. Adv. Mater. 2018, 30, 1704639.

20

Zhao, X. Y.; Guo, K. L.; Zhang, K.; Duan, S.; Chen, M. W.; Zhao, N. N.; Xu, F. J. Orchestrated yolk-shell nanohybrids regulate macrophage polarization and dendritic cell maturation for oncotherapy with augmented antitumor immunity. Adv. Mater. 2022, 2108263.

21

Park, G. D.; Kang, Y. C. Yolk-shell-structured nanospheres with goat pupil-like S-doped SnSe yolk and hollow carbon-shell configuration as anode material for sodium-ion storage. Small Methods 2021, 5, 2100302.

22

Zhao, H. H.; Xu, X. Z.; Wang, Y. H.; Fan, D. G.; Liu, D. W.; Lin, K. F.; Xu, P.; Han, X. J.; Du, Y. C. Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 2020, 16, 2003407.

23

Man, Z. M.; Li, P.; Zhou, D.; Wang, Y. Z.; Liang, X. H.; Zang, R.; Li, P. X.; Zuo, Y. Q.; Lam, Y. M.; Wang, G. X. Two birds with one stone: FeS2@C yolk-shell composite for high-performance sodium-ion energy storage and electromagnetic wave absorption. Nano Lett. 2020, 20, 3769–3777.

24

Liu, X. F.; Hao, C. C.; He, L. H.; Yang, C.; Chen, Y. B.; Jiang, C. B.; Yu, R. H. Yolk-shell structured Co-C/void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 2018, 11, 4169–4182.

25

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

26

Ma, W. J.; He, P.; Wang, T. Y.; Xu, J.; Liu, X. Y.; Zhuang, Q. X.; Cui, Z. K.; Lin, S. L. Microwave absorption of carbonization temperature-dependent uniform yolk-shell H-Fe3O4@C microspheres. Chem. Eng. J. 2021, 420, 129875.

27

Gao, S. T.; Zhang, Y. C.; Xing, H. L.; Li, H. X. Controlled reduction synthesis of yolk-shell magnetic@void@C for electromagnetic wave absorption. Chem. Eng. J. 2020, 387, 124149.

28
Zhang, Y. L. ; Ma, Z. L. ; Ruan, K. P. ; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601−5609.https://doi.org/10.1007/s12274-022-4358-7
29

Huang, S.; Wang, L.; Li, Y. C.; Liang, C. B.; Zhang, J. L. Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 2021, 138, 50649.

30

Xing, L. S.; Li, X.; Wu, Z. C.; Yu, X. F.; Liu, J. W.; Wang, L.; Cai, C. Y.; You, W. B.; Chen, G. Y.; Ding, J. J. et al. 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem Eng J. 2020, 379, 122241.

31

Sun, X.; Pu, Y. H.; Wu, F.; He, J. Z.; Deng, G.; Song, Z. M.; Liu, X. F.; Shui, J. L.; Yu, R. H. 0D-1D-2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption. Chem Eng J. 2021, 423, 130132.

32

Zhang, W. X.; Yang, M.; Zhang, H.; Yu, X. J.; Zhang, W.; Wee, A. T. S.; Yan, X.; Qi, J. W.; Li, J. S. A confinement approach to fabricate hybrid PBAs-derived FeCo@NC yolk-shell nanoreactors for bisphenol a degradation. Chem. Eng. J. 2022, 428, 131080.

33

Cui, L. R.; Wang, Y. H.; Han, X. J.; Xu, P.; Wang, F. Y.; Liu, D. W.; Zhao, H. H.; Du, Y. C. Phenolic resin reinforcement: A new strategy for hollow NiCo@C microboxes against electromagnetic pollution. Carbon 2021, 174, 673–682.

34

Zhao, B.; Li, Y.; Ji, H. Y.; Bai, P. W.; Wang, S.; Fan, B. B.; Guo, X. Q.; Zhang, R. Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon 2021, 176, 411–420.

35

Qiu, Y.; Yang, H. B.; Cheng, Y.; Wen, B.; Lin, Y. Structure design of Prussian blue analogue derived CoFe@C composite with tunable microwave absorption performance. Appl. Surf. Sci. 2022, 571, 151334.

36

Li, C.; Peng, Q.; Qi, X. S.; Chen, Y. L.; Gong, X.; Wang, X.; Deng, C. Y.; Zhong, W.; Du, Y. W. Morphology optimization strategy of flower-like CoNi2S4/Co9S8@MoS2 core@shell nanocomposites to achieve extraordinary microwave absorption performances. J. Colloid Interface Sci. 2022, 606, 1128–1139.

37

Guan, H. T.; Wang, Q. Y.; Wu, X. F.; Pang, J.; Jiang, Z. Y.; Chen, G.; Dong, C. J.; Wang, L. H.; Gong, C. H. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Compos. Part B Eng. 2021, 207, 108562.

38

Wang, Y. F.; Chen, D. L.; Yin, X.; Xu, P.; Wu, F.; He, M. Hybrid of MoS2 and reduced graphene oxide: A lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces 2015, 7, 26226–26234.

39

Lei, L.; Yao, Z. J.; Zhou, J. T.; Zheng, W. J.; Wei, B.; Zu, J. Q.; Yan, K. Y. Hydrangea-like Ni/NiO/C composites derived from metal-organic frameworks with superior microwave absorption. Carbon 2021, 173, 69–79.

40

Zhao, Y. P.; Zuo, X. Q.; Guo, Y.; Huang, H.; Zhang, H.; Wang, T.; Wen, N. X.; Chen, H.; Cong, T. Z.; Muhammad, J. et al. Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 2021, 13, 144.

41

Sun, X. X.; Li, Y. B.; Huang, Y. X.; Cheng, Y. J.; Wang, S. S.; Yin, W. L. Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials. Adv. Funct. Mater. 2022, 32, 2107508.

42

Yang, L. J.; Lv, H. L.; Li, M.; Zhang, Y.; Liu, J. C.; Yang, Z. H. Multiple polarization effect of shell evolution on hierarchical hollow C@MnO2 composites and their wideband electromagnetic wave absorption properties. Chem. Eng. J. 2020, 392, 123666.

43

Yang, Z. H.; Lv, H. L.; Wu, R. B. Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 2016, 9, 3671–3682.

44

Bi, Y. X.; Ma, M. L.; Liao, Z. J.; Tong, Z. Y.; Chen, Y.; Wang, R. Z.; Ma, Y.; Wu, G. L. One-dimensional Ni@Co/C@PPy composites for superior electromagnetic wave absorption. J. Colloid Interface Sci. 2022, 605, 483–492.

45

Li, X.; Wang, Z. L.; Xiang, Z.; Zhu, X. J.; Dong, Y. Y.; Huang, C.; Cai, L.; Lu, W. Biconical prisms Ni@C composites derived from metal-organic frameworks with an enhanced electromagnetic wave absorption. Carbon 2021, 184, 115–126.

46

Wang, Y. Q.; Wang, H. G.; Ye, J. H.; Shi, L. Y.; Feng, X. Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123096.

47

Liu, G. L.; Liu, X. F.; Song, Z. M.; Sun, X.; Li, Y.; Shui, J. L.; Yu, R. H. Hollow double-shell structured void@SiO2@Co-C composite for broadband electromagnetic wave absorption. Chem. Eng. J. 2021, 417, 128093.

48

Ning, M. Q.; Man, Q. K.; Tan, G. G.; Lei, Z. K.; Li, J. B.; Li, R. W. Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: A case of a dielectric absorber with optimized impedance for efficient microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 20785–20796.

49

Zhao, Z. X.; Xu, S. W.; Du, Z. J.; Jiang, C.; Huang, X. Z. Metal-organic framework-based PB@MoS2 core-shell microcubes with high efficiency and broad bandwidth for microwave absorption performance. ACS Sustainable Chem. Eng. 2019, 7, 7183–7192.

50

Wang, Y.; Di, X. C.; Fu, Y. Q.; Wu, X. M.; Cao, J. T. Facile synthesis of the three-dimensional flower-like ZnFe2O4@MoS2 composite with heterogeneous interfaces as a high-efficiency absorber. J. Colloid Interface Sci. 2021, 587, 561–573.

51

Wang, X. Y.; Zhu, T.; Chang, S. C.; Lu, Y. K.; Mi, W. B.; Wang, W. 3D nest-like architecture of core-shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 2020, 12, 11252–11264.

52

Fang, G.; Liu, C. Y.; Yang, Y.; Peng, K. S.; Cao, Y. F.; Jiang, T.; Zhang, Y. T.; Zhang, Y. J. Regulating percolation threshold via dual conductive phases for high-efficiency microwave absorption performance in C and X bands. ACS Appl. Mater. Interfaces 2021, 13, 37517–37526.

53

Pan, J. J.; Sun, X.; Jin, Z. Z.; Wang, T.; Zhao, Q. L.; Qu, H. J.; He, J. P. Constructing two-dimensional lamellar monometallic carbon nanocomposites by sodium chloride hard template for lightweight microwave scattering and absorption. Compos. Part B Eng. 2022, 228, 109422.

54

Zhang, J. J.; Li, Z. H.; Qi, X. S.; Gong, X.; Xie, R.; Deng, C. Y.; Zhong, W.; Du, Y. W. Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Compos. Part B Eng. 2021, 222, 109067.

55

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

Nano Research
Pages 6761-6771
Cite this article:
Li C, Qi X, Gong X, et al. Magnetic-dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2nanocomposites with tunable and strong wideband microwave absorption. Nano Research, 2022, 15(7): 6761-6771. https://doi.org/10.1007/s12274-022-4468-2
Topics:
Part of a topical collection:

1570

Views

192

Crossref

193

Web of Science

189

Scopus

34

CSCD

Altmetrics

Received: 10 April 2022
Revised: 21 April 2022
Accepted: 23 April 2022
Published: 13 May 2022
© Tsinghua University Press 2022
Return