AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Development and characterization of photovoltaic tandem-junction nanowires using electron-beam-induced current measurements

Lukas HrachowinaEnrique BarrigónMagnus T. Borgström( )
NanoLund and Divison of Solid State Physics, Lund University, Box 118, 221 00 Lund, Sweden
Present address: Universidad de Málaga, Andalucía Tech, Departamento de Física Aplicada I, Campus de Teatinos, s/n, Málaga 29071, Spain
Show Author Information

Graphical Abstract

We developed tandem-junction nanowires guided by electron-beam-induced current measurements. Then, we characterized the individual junctions by applying an additional bias.

Abstract

Nanowires have many interesting properties that are of advantage for solar cells, such as the epitaxial combination of lattice-mismatched materials without plastic deformation. This could be utilized for the synthesis of axial tandem-junction nanowire solar cells with high efficiency at low material cost. Electron-beam-induced current measurements have been used to optimize the performance of single-junction nanowire solar cells. Here, we use electron-beam-induced current measurements to break the barrier to photovoltaic tandem-junction nanowires. In particular, we identify and subsequently prevent the occurrence of a parasitic junction when combining an InP n–i–p junction with a tunnel diode. Furthermore, we demonstrate how to use optical and electrical biases to individually measure the electron-beam-induced current of both sub-cells of photovoltaic tandem-junction nanowires. We show that with an applied voltage in forward direction, all junctions can be analyzed simultaneously. The development of this characterization technique enables further optimization of tandem-junction nanowire solar cells.

Electronic Supplementary Material

Download File(s)
12274_2022_4469_MOESM1_ESM.pdf (549.3 KB)

References

1

Krogstrup, P.; Jørgensen, H. I.; Heiss, M.; Demichel, O.; Holm, J. V.; Aagesen, M.; Nygård, J.; Morral, A. F. I. Single-nanowire solar cells beyond the Shockley–Queisser limit. Nat. Photonics 2013, 7, 306–310.

2

Anttu, N.; Xu, H. Q. Efficient light management in vertical nanowire arrays for photovoltaics. Opt. Express 2013, 21, A558–A575.

3

Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057–1060.

4

Van Dam, D.; Van Hoof, N. J. J.; Cui, Y. C.; Van Veldhoven, P. J.; Bakkers, E. P. A. M.; Rivas, J. G.; Haverkort, J. E. M. High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide mie scatterers. ACS Nano 2016, 10, 11414–11419.

5

Spurgeon, J. M.; Plass, K. E.; Kayes, B. M.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. Repeated epitaxial growth and transfer of arrays of patterned, vertically aligned, crystalline Si wires from a single Si (111) substrate. Appl. Phys. Lett. 2008, 93, 032112.

6

Plass, K. E.; Filler, M. A.; Spurgeon, J. M.; Kayes, B. M.; Maldonado, S.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. Flexible polymer-embedded Si wire arrays. Adv. Mater. 2009, 21, 325–328.

7

Zhang, Y. W.; Hrachowina, L.; Barrigón, E.; Åberg, I.; Borgström, M. Self-limiting polymer exposure for vertical processing of semiconductor nanowire-based flexible electronics. ACS Appl. Nano Mater. 2020, 3, 7743–7749.

8

Abrand, A.; Baboli, M. A.; Fedorenko, A.; Polly, S. J.; Manfreda-Schulz, E.; Hubbard, S. M.; Mohseni, P. K. Localized self-assembly of InAs nanowire arrays on reusable Si substrates for substrate-free optoelectronics. ACS Appl. Nano Mater. 2022, 5, 840–851.

9

Chen, Y.; Hrachowina, L.; Barrigón, E.; Beech, J. P.; Alcer, D.; Lyttleton, R.; Jam, R. J.; Samuelson, L.; Linke, H.; Borgström, M. Semiconductor nanowire array for transparent photovoltaic applications. Appl. Phys. Lett. 2021, 118, 191107.

10

Mukherjee, A.; Ren, D. D.; Vullum, P. E.; Huh, J.; Fimland, B. O.; Weman, H. GaAs/AlGaAs nanowire array solar cell grown on Si with ultrahigh power-per-weight ratio. ACS Photonics 2021, 8, 2355–2366.

11

Espinet-Gonzalez, P.; Barrigón, E.; Otnes, G.; Vescovi, G.; Mann, C.; France, R. M.; Welch, A. J.; Hunt, M. S.; Walker, D.; Kelzenberg, M. D. et al. Radiation tolerant nanowire array solar cells. ACS Nano 2019, 13, 12860–12869.

12

Espinet-Gonzalez, P.; Barrigón, E.; Chen, Y.; Otnes, G.; Vescovi, G.; Mann, C.; Lloyd, J. V.; Walker, D.; Kelzenberg, M. D.; Åberg, I. et al. Nanowire solar cells: A new radiation hard PV technology for space applications. IEEE J. Photovolt. 2020, 10, 502–507.

13

Yao, M. Q.; Huang, N. F.; Cong, S.; Chi, C. Y.; Seyedi, M. A.; Lin, Y. T.; Cao, Y.; Povinelli, M. L.; Dapkus, P. D.; Zhou, C. W. GaAs nanowire array solar cells with axial p–i–n junctions. Nano Lett. 2014, 14, 3293–3303.

14

Kelzenberg, M. D.; Turner-Evans, D. B.; Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Lewis, N. S.; Atwater, H. A. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 2008, 8, 710–714.

15

Mikulik, D.; Ricci, M.; Tutuncuoglu, G.; Matteini, F.; Vukajlovic, J.; Vulic, N.; Alarcon-Llado, E.; Morral, A. F. I. Conductive-probe atomic force microscopy as a characterization tool for nanowire-based solar cells. Nano Energy 2017, 41, 566–572.

16

Leamy, H. J. Charge collection scanning electron microscopy. J. Appl. Phys. 1982, 53, R51–R80.

17

Moore, J. E.; Affouda, C. A.; Maximenko, S. I.; Jenkins, P. Analytical and numerical simulation of electron beam induced current profiles in p–n junctions. J. Appl. Phys. 2018, 124, 113102.

18

Gustafsson, A.; Björk, M. T.; Samuelson, L. Locating nanowire heterostructures by electron beam induced current. Nanotechnology 2007, 18, 205306.

19

Allen, J. E.; Hemesath, E. R.; Perea, D. E.; Lensch-Falk, J. L.; Li, Z. Y.; Yin, F.; Gass, M. H.; Wang, P.; Bleloch, A. L.; Palmer, R. E. et al. High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 2008, 3, 168–173.

20

Kleindiek, S.; Kim, H. S.; Kratschmer, E.; Chang, T. H. P. Miniature three-axis micropositioner for scanning proximal probe and other applications. J. Vac. Sci. Technol. B 1995, 13, 2653–2656.

21

Erlandsson, R.; Olsson, L. A three-axis micropositioner for ultrahigh vacuum use based on the inertial slider principle. Rev. Sci. Instrum. 1996, 67, 1472–1474.

22

Katzenmeyer, A. M.; Léonard, F.; Talin, A. A.; Wong, P. S.; Huffaker, D. L. Poole–Frenkel effect and phonon-assisted tunneling in GaAs nanowires. Nano Lett. 2010, 10, 4935–4938.

23

Piazza, V.; Wirths, S.; Bologna, N.; Ahmed, A. A.; Bayle, F.; Schmid, H.; Julien, F.; Tchernycheva, M. Nanoscale analysis of electrical junctions in InGaP nanowires grown by template-assisted selective epitaxy. Appl. Phys. Lett. 2019, 114, 103101.

24

Otnes, G.; Barrigón, E.; Sundvall, C.; Svensson, K. E.; Heurlin, M.; Siefer, G.; Samuelson, L.; Åberg, I.; Borgström, M. T. Understanding InP nanowire array solar cell performance by nanoprobe-enabled single nanowire measurements. Nano Lett. 2018, 18, 3038–3046.

25

Barrigón, E.; Hrachowina, L.; Borgström, M. T. Light current–voltage measurements of single, as-grown, nanowire solar cells standing vertically on a substrate. Nano Energy 2020, 78, 105191.

26

Esaki, L. New phenomenon in narrow germanium pn junctions. Phys. Rev. 1958, 109, 603–604.

27

Maximenko, S. I.; Messenger, S. R.; Cress, C. D.; Freitas, J. A.; Walters, R. J. Application of CL/EBIC-SEM techniques for characterization of radiation effects in multijunction solar cells. IEEE Trans. Nucl. Sci. 2010, 57, 3095–3100.

28
Maximenko, S. I.; Messenger, S. R.; Hoheisel, R.; Scheiman, D.; Gonzalez, M.; Lorentzen, J.; Jenkins, P. P.; Walters, R. J. Characterization of high fluence irradiations on advanced triple junction solar cells. In 2013 IEEE 39thPhotovoltaic Specialists Conference, Tampa, USA, 2013, pp 2797–2800.https://doi.org/10.1109/PVSC.2013.6745053
29

Paraskeva, V.; Hadjipanayi, M.; Norton, M.; Pravettoni, M.; Georghiou, G. E. Voltage and light bias dependent quantum efficiency measurements of GaInP/GaInAs/Ge triple junction devices. Sol. Energy Mater. Sol. Cells 2013, 116, 55–60.

30

Barrigón, E.; Espinet-González, P.; Contreras, Y.; Rey-Stolle, I. Implications of low breakdown voltage of component subcells on external quantum efficiency measurements of multijunction solar cells. Progr. Photovoltaics 2015, 23, 1597–1607.

31
Hrachowina, L.; Chen, Y.; Barrigón, E.; Wallenberg, R.; Borgström, M. T. Realization of axially defined GaInP/InP/InAsP triple-junction photovoltaic nanowires for high performance solar cells. Materials Today Energy2022, 101050.https://doi.org/10.1016/j.mtener.2022.101050
32

Wallentin, J.; Persson, J. M.; Wagner, J. B.; Samuelson, L.; Deppert, K.; Borgström, M. T. High-performance single nanowire tunnel diodes. Nano Lett. 2010, 10, 974–979.

33

Zeng, X. L.; Otnes, G.; Heurlin, M.; Mourão, R. T.; Borgström, M. T. InP/GaInP nanowire tunnel diodes. Nano Res. 2018, 11, 2523–2531.

34

Kazemian, P.; Mentink, S. A. M.; Rodenburg, C.; Humphreys, C. J. Quantitative secondary electron energy filtering in a scanning electron microscope and its applications. Ultramicroscopy 2007, 107, 140–150.

35

Rodenburg, C.; Jepson, M. A. E.; Bosch, E. G. T.; Dapor, M. Energy selective scanning electron microscopy to reduce the effect of contamination layers on scanning electron microscope dopant mapping. Ultramicroscopy 2010, 110, 1185–1191.

36

Otnes, G.; Heurlin, M.; Graczyk, M.; Wallentin, J.; Jacobsson, D.; Berg, A.; Maximov, I.; Borgström, M. T. Strategies to obtain pattern fidelity in nanowire growth from large-area surfaces patterned using nanoimprint lithography. Nano Res. 2016, 9, 2852–2861.

37

Borgström, M. T.; Wallentin, J.; Trägårdh, J.; Ramvall, P.; Ek, M.; Wallenberg, L. R.; Samuelson, L.; Deppert, K. In situ etching for total control over axial and radial nanowire growth. Nano Res. 2010, 3, 264–270.

38

Dagytė, V.; Heurlin, M.; Zeng, X. L.; Borgström, M. T. Growth kinetics of GaxIn(1−x)P nanowires using triethylgallium as Ga precursor. Nanotechnology 2018, 29, 394001.

39

Alcer, D.; Saxena, A. P.; Hrachowina, L.; Zou, X. S.; Yartsev, A.; Borgström, M. T. Comparison of triethylgallium and trimethylgallium precursors for GaInP nanowire growth. Phys. Status Solidi B 2021, 258, 2000400.

Nano Research
Pages 8510-8515
Cite this article:
Hrachowina L, Barrigón E, Borgström MT. Development and characterization of photovoltaic tandem-junction nanowires using electron-beam-induced current measurements. Nano Research, 2022, 15(9): 8510-8515. https://doi.org/10.1007/s12274-022-4469-1
Topics:

897

Views

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 25 March 2022
Accepted: 25 April 2022
Published: 14 June 2022
© Tsinghua University Press 2022
Return