AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

CaCO3-MnSiOx hybrid particles to enable CO2-mediated combinational tumor therapy

Congkun Xie1,§Tian Zhang1,§Yike Fu1,2( )Gaorong Han1Xiang Li1,2( )
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China

§ Congkun Xie and Tian Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

1. Novel hybrid particles (CaCO3@MS) were constructed to enable agitated promotion of CO2, Mn2+, and Ca2+ in tumor cells and local pH modulation through a single platform.2. With the treatment of CaCO3@MS, the cellular oxidative damage mediated by a novel mechanism of “exogenous CO2 enhanced catalytic therapy”, functions collaboratively with intracellular calcium enrichment, leading to remarkable tumor inhibition phenomenon.

Abstract

Nanocatalysts mediated reactive oxygen species (ROS) based therapy has been exploited as an alternative therapeutic modality of tumor with high specificity and minimal side effects. However, the treatment outcome is limited by the efficiency of local catalytic reaction. Herein, we report a novel type of core–shell hybrid nanoparticles (CaCO3@MS), consisting of CaCO3 and MnSiOx, for synergistic tumor inhibition combining enhanced catalytic effect and calcium overload. In this system, MnSiOx serves as catalysts with glutathione (GSH) responsive Mn2+ ions release functionality. CaCO3 nanoparticles play three important roles, including carbon dioxide (CO2) donor, pH modulator, and Ca2+ overload agent. It is found that the CaCO3 nanoparticles can induce CO2 production and pH increase in acidic tumor environment, both of which promote Mn2+ mediated ROS generation. And simultaneous release of Ca2+ ions from CaCO3 triggers calcium overload in tumor, which functions collaboratively with excessive ROS to induce cancer cell apoptosis. The results demonstrate that after treatment with CaCO3@MS, a remarkable tumor inhibition was achieved both in vitro and in vivo, while no clear toxic effect was observed. This study has therefore provided a feasible effective approach to improve catalytic therapeutic efficacy by an “exogenous CO2 delivery” strategy for combinational tumor therapy.

Electronic Supplementary Material

Download File(s)
12274_2022_4471_MOESM1_ESM.pdf (1.5 MB)

References

1

Yang, B. W.; Chen, Y.; Shi, J. L. Nanocatalytic medicine. Adv. Mater. 2019, 31, 1901778.

2

Xie, C. K.; Cen, D.; Ren, Z. H.; Wang, Y. F.; Wu, Y. J.; Li, X.; Han, G. R.; Cai, X. J. FeS@BSA nanoclusters to enable H2S-amplified ROS-based therapy with MRI guidance. Adv. Sci. 2020, 7, 1903512.

3

Zhang, C.; Bu, W. B.; Ni, D. L.; Zhang, S. J.; Li, Q.; Yao, Z. W.; Zhang, J. W.; Yao, H. L.; Wang, Z.; Shi, J. L. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew. Chem., Int. Ed. 2016, 55, 2101–2106.

4

Tang, Z. M.; Zhang, H. L.; Liu, Y. Y.; Ni, D. L.; Zhang, H.; Zhang, J. W.; Yao, Z. W.; He, M. Y.; Shi, J. L.; Bu, W. B. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv. Mater. 2017, 29, 1701683.

5

Deng, L. M.; Liu, M. Z.; Sheng, D. L.; Luo, Y. L.; Wang, D.; Yu, X.; Wang, Z. G.; Ran, H. T.; Li, P. Low-intensity focused ultrasound-augmented cascade chemodynamic therapy via boosting ROS generation. Biomaterials 2021, 271, 120710.

6

Li, S. L.; Jiang, P.; Jiang, F. L.; Liu, Y. Recent advances in nanomaterial-based nanoplatforms for chemodynamic cancer therapy. Adv. Funct. Mater. 2021, 31, 2100243.

7

Tian, Q. W.; Xue, F. F.; Wang, Y. R.; Cheng, Y. Y.; An, L.; Yang, S. P.; Chen, X. Y.; Huang, G. Recent advances in enhanced chemodynamic therapy strategies. Nano Today 2021, 39, 101162.

8

Chen, J.; Wang, X. B.; Liu, Y. B.; Liu, H. L.; Gao, F. L.; Lan, C.; Yang, B. C.; Zhang, S. R.; Gao, Y. J. pH-responsive catalytic mesocrystals for chemodynamic therapy via ultrasound-assisted Fenton reaction. Chem. Eng. J. 2019, 369, 394–402.

9

Hu, P.; Wu, T.; Fan, W. P.; Chen, L.; Liu, Y. Y.; Ni, D. L.; Bu, W. B.; Shi, J. L. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials 2017, 141, 86–95.

10

Ember, E.; Rothbart, S.; Puchta, R.; Van Eldik, R. Metal ion-catalyzed oxidative degradation of orange II by H2O2. High catalytic activity of simple manganese salts. New J. Chem. 2009, 33, 34–49.

11

Lin, L. S.; Song, J. B.; Song, L.; Ke, K. M.; Liu, Y. J.; Zhou, Z. J.; Shen, Z. Y.; Li, J.; Yang, Z.; Tang, W. et al. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 4902–4906.

12
Li, C. ; Wan, Y. ; Zhang, Y. ; Fu, L. H. ; Blum, N. T. ; Cui, R. ; Wu, B. ; Zheng, R. ; Lin, J. ; Li, Z. et al. In situ sprayed starvation/chemodynamic therapeutic gel for post-surgical treatment of IDH1 (R132H) glioma. Adv. Mater. 2022, 34, 2103980.
13

He, T.; Jiang, C.; He, J.; Zhang, Y. F.; He, G.; Wu, J. Y. Z.; Lin, J.; Zhou, X.; Huang, P. Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex-imaging-guided NIR-II photothermal-chemodynamic therapy. Adv. Mater. 2021, 33, 2008540.

14

Fu, L. H.; Wan, Y. L.; Li, C. Y.; Qi, C.; He, T.; Yang, C.; Zhang, Y. F.; Lin, J.; Huang, P. Biodegradable calcium phosphate nanotheranostics with tumor-specific activatable cascade catalytic reactions-augmented photodynamic therapy. Adv. Funct. Mater. 2021, 31, 2009848.

15

Fu, L. H.; Hu, Y. R.; Qi, C.; He, T.; Jiang, S. S.; Jiang, C.; He, J.; Qu, J. L.; Lin, J.; Huang, P. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano 2019, 13, 13985–13994.

16

Illés, E.; Mizrahi, A.; Marks, V.; Meyerstein, D. Carbonate-radical-anions, and not hydroxyl radicals, are the products of the Fenton reaction in neutral solutions containing bicarbonate. Free Radical Biol. Med. 2019, 131, 1–6.

17

Burg, A.; Shamir, D.; Shusterman, I.; Kornweitz, H.; Meyerstein, D. The role of carbonate as a catalyst of Fenton-like reactions in AOP processes: CO3·− as the active intermediate. Chem. Commun. Roy. Soc. Chem. 2014, 50, 13096–13099.

18

Zhang, Y. M.; Lou, J. K.; Wu, L. L.; Nie, M. H.; Yan, C. X.; Ding, M. J.; Wang, P.; Zhang, H. Minute Cu2+ coupling with HCO3 for efficient degradation of acetaminophen via H2O2 activation. Ecotox. Environ. Safe. 2021, 221, 112422.

19

Cummins, E. P.; Selfridge, A. C.; Sporn, P. H.; Sznajder, J. I.; Taylor, C. T. Carbon dioxide-sensing in organisms and its implications for human disease. Cell. Mol. Life Sci. 2014, 71, 831–845.

20

Qi, C.; He, J.; Fu, L. H.; He, T.; Blum, N. T.; Yao, X. K.; Lin, J.; Huang, P. Tumor-specific activatable nanocarriers with gas-generation and signal amplification capabilities for tumor theranostics. ACS Nano 2021, 15, 1627–1639.

21

Dizaj, S. M.; Sharifi, S.; Ahmadian, E.; Eftekhari, A.; Adibkia, K.; Lotfipour, F. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert Opin. Drug Deliv. 2019, 16, 331–345.

22

Xu, C. Y.; Yan, Y. F.; Tan, J. C.; Yang, D. H.; Jia, X. J.; Wang, L.; Xu, Y. S.; Cao, S.; Sun, S. T. Biodegradable nanoparticles of polyacrylic acid-stabilized amorphous CaCO3 for tunable pH-responsive drug delivery and enhanced tumor inhibition. Adv. Funct. Mater. 2019, 29, 1808146.

23

Xue, C. C.; Li, M. H.; Zhao, Y.; Zhou, J.; Hu, Y.; Cai, K. Y.; Zhao, Y. L.; Yu, S. H.; Luo, Z. Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells. Sci. Adv. 2020, 6, eaax1346.

24

An, J. Y.; Zhang, K. X.; Wang, B. H.; Wu, S. X.; Wang, Y. F.; Zhang, H. L.; Zhang, Z. Z.; Liu, J. J.; Shi, J. J. Nanoenabled disruption of multiple barriers in antigen cross-presentation of dendritic cells via calcium interference for enhanced chemo-immunotherapy. ACS Nano 2020, 14, 7639–7650.

25

Dong, Z. L.; Feng, L. Z.; Zhu, W. W.; Sun, X. Q.; Gao, M.; Zhao, H.; Chao, Y.; Liu, Z. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials 2016, 110, 60–70.

26

Som, A.; Raliya, R.; Tian, L. M.; Akers, W.; Ippolito, J. E.; Singamaneni, S.; Biswas, P.; Achilefu, S. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo. Nanoscale 2016, 8, 12639–12647.

27

Zheng, P.; Ding, B. B.; Shi, R.; Jiang, Z. Y.; Xu, W. G.; Li, G.; Ding, J. X.; Chen, X. S. A multichannel Ca2+ nanomodulator for multilevel mitochondrial destruction-mediated cancer therapy. Adv. Mater. 2021, 33, 2007426.

28

Hempel, N.; Trebak, M. Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium 2017, 63, 70–96.

29

Peng, T. I.; Jou, M. J. Oxidative stress caused by mitochondrial calcium overload. Ann. N. Y. Acad. Sci. 2010, 1201, 183–188.

30

Bonora, M.; Pinton, P. The mitochondrial permeability transition pore and cancer: Molecular mechanisms involved in cell death. Front. Oncol. 2014, 4, 302.

31

Monteith, G. R.; Prevarskaya, N.; Roberts-Thomson, S. J. The calcium-cancer signalling nexus. Nat. Rev. Cancer 2017, 17, 373–380.

32

Antonucci, S.; Di Lisa, F.; Kaludercic, N. Mitochondrial reactive oxygen species in physiology and disease. Cell Calcium 2021, 94, 102344.

33

Görlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O. Calcium and ROS: A mutual interplay. Redox Biol. 2015, 6, 260–271.

34

Zhao, Y.; Lin, L. N.; Lu, Y.; Chen, S. F.; Dong, L.; Yu, S. H. Templating synthesis of preloaded doxorubicin in hollow mesoporous silica nanospheres for biomedical applications. Adv. Mater. 2010, 22, 5255–5259.

35

Zhao, Y.; Luo, Z.; Li, M. H.; Qu, Q. Y.; Ma, X.; Yu, S. H.; Zhao, Y. L. A preloaded amorphous calcium carbonate/doxorubicin@silica nanoreactor for pH-responsive delivery of an anticancer drug. Angew. Chem., Int. Ed. 2015, 54, 919–922.

Nano Research
Pages 8281-8290
Cite this article:
Xie C, Zhang T, Fu Y, et al. CaCO3-MnSiOx hybrid particles to enable CO2-mediated combinational tumor therapy. Nano Research, 2022, 15(9): 8281-8290. https://doi.org/10.1007/s12274-022-4471-7
Topics:

1102

Views

13

Crossref

13

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 08 March 2022
Revised: 22 April 2022
Accepted: 25 April 2022
Published: 14 June 2022
© Tsinghua University Press 2022
Return