AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

One-step reduction-encapsulated synthesis of Ag@polydopamine multicore-shell nanosystem for enhanced photoacoustic imaging and photothermal-chemodynamic cancer therapy

Xiao-Rui Li1,§Baoli Yin2,§Lei Gao3Xinhao Li3Hongwen Huang3( )Guosheng Song2( )Yi-Ge Zhou1( )
Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
College of Materials Science and Engineering, Hunan University, Changsha 410082, China

§ Xiao-Rui Li and Baoli Yin contributed equally to this work.

Show Author Information

Graphical Abstract

One-step reduction-encapsulated synthesis of multicore-shell polydopamine-coated Ag nanoparticles (AgNPs@PDA) is found to exhibit remarkable properties of amplified photoacoustic (PA) imaging, improved photothermal therapy (PTT), dual tumor microenvironment (TME)-coactivated chemodynamic therapy (CDT) and photothermal-enhanced CDT.

Abstract

Though imaging-guided multimodal therapy has been demonstrated as an effective strategy to improve cancer diagnosis and therapy, challenge remains as to simplify the sophisticated synthesis procedure for the corresponding nanoagents. Herein, an in-situ one-step reduction-encapsulated method has been reported, for the first time, to synthesize multicore-shell polydopamine-coated Ag nanoparticles (AgNPs@PDA) as a cancer theranostic agent, integrating amplified photoacoustic imaging, enhanced photothermal therapy, and photothermal promoted dual tumor microenvironment-coactivated chemodynamic therapy. The photoacoustic signal and the photothermal conversion efficiency of AgNPs@PDA nanosystem present a 6.6- and 4.2-fold enhancement compared to those of M-AgNPs-PDA (simply mixing PDA and AgNPs) derived from the increased interface heat transfer coefficient and the stronger near-infrared absorption. Importantly, AgNPs@PDA coactivated by dual tumor microenvironment (TME) enables controllable long-term release of hydroxyl radicals (·OH) and toxic Ag+, which can be further promoted by near-infrared light irradiation. Moreover, the high efficiency of AgNPs@PDA nanosystem with prominent photoacoustic imaging-guided synergistic photothermal-chemodynamic cancer treatment is also found in in vitro and in vivo studies. As a special mention, the formation mechanism of the one-step synthesized multicore-shell nanomaterials is systematically investigated. This work provides a much simplified one-step synthesis method for the construction of a versatile nanoplatform for cancer theranostics with high efficacy.

Electronic Supplementary Material

Download File(s)
12274_2022_4474_MOESM1_ESM.pdf (4.5 MB)

References

1

Fan, W. P.; Yung, B.; Huang, P.; Chen, X. Y. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 2017, 117, 13566–13638.

2

Ward, R. A.; Fawell, S.; Floc'h, N.; Flemington, V.; McKerrecher, D.; Smith, P. D. Challenges and opportunities in cancer drug resistance. Chem. Rev. 2021, 121, 3297–3351.

3

Guo, X. L.; Yang, N. D.; Ji, W. H.; Zhang, H.; Dong, X.; Zhou, Z. Q.; Li, L.; Shen, H. M.; Yao, S. Q.; Huang, W. Mito-bomb: Targeting mitochondria for cancer therapy. Adv. Mater. 2021, 33, 2007778.

4

Jiang, Z. Y.; Zhang, C. L.; Wang, X. Q.; Yan, M.; Ling, Z. X.; Chen, Y. C.; Liu, Z. P. A borondifluoride-complex-based photothermal agent with an 80% photothermal conversion efficiency for photothermal therapy in the NIR-II window. Angew. Chem., Int. Ed. 2021, 60, 22376–22384.

5

Xie, Z. J.; Fan, T. J.; An, J.; Choi, W.; Duo, Y. H.; Ge, Y. Q.; Zhang, B.; Nie, G. H.; Xie, N.; Zheng, T. T. et al. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem. Soc. Rev. 2020, 49, 8065–8087.

6

Fan, R. R.; Chen, C. L.; Hou, H.; Chuan, D.; Mu, M.; Liu, Z. Y.; Liang, R. C.; Guo, G.; Xu, J. G. Tumor acidity and near-infrared light responsive dual drug delivery polydopamine-based nanoparticles for chemo-photothermal therapy. Adv. Funct. Mater. 2021, 31, 2009733.

7

Liu, Y. X.; Zhu, X. J.; Wei, Z.; Feng, W.; Li, L. Y.; Ma, L. Y.; Li, F. Y.; Zhou, J. Customized photothermal therapy of subcutaneous orthotopic cancer by multichannel luminescent nanocomposites. Adv. Mater. 2021, 33, 2008615.

8

Jia, Y. P.; Song, Y.; Qu, Y.; Peng, J. R.; Shi, K.; Du, D.; Li, H.; Lin, Y. H.; Qian, Z. Y. Mesoporous PtPd nanoparticles for ligand-mediated and imaging-guided chemo-photothermal therapy of breast cancer. Nano Res. 2020, 13, 1739–1748.

9
Ju Y. M. Wang Z. Y. Ali Z. Zhang H. C. Wang Y. Z. Xu N. Yin H. Sheng F. G. Hou Y. L. A pH-responsive biomimetic drug delivery nanosystem for targeted chemo-photothermal therapy of tumors Nano Res. 2022 15 4274 4284 10.1007/s12274-022-4077-0

Ju, Y. M.; Wang, Z. Y.; Ali, Z.; Zhang, H. C.; Wang, Y. Z.; Xu, N.; Yin, H.; Sheng, F. G.; Hou, Y. L. A pH-responsive biomimetic drug delivery nanosystem for targeted chemo-photothermal therapy of tumors. Nano Res. 2022, 15, 4274–4284.

10

Cao, C. Y.; Wang, X. R.; Yang, N.; Song, X. J.; Dong, X. C. Recent advances of cancer chemodynamic therapy based on Fenton/Fenton-like chemistry. Chem. Sci. 2022, 13, 863–889.

11

Zhou, Y. F.; Fan, S. Y.; Feng, L. L.; Huang, X. L.; Chen, X. Y. Manipulating intratumoral Fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy. Adv. Mater. 2021, 33, 2104223.

12

Fu, S. Y.; Yang, R. H.; Ren, J. J.; Liu, J. H.; Zhang, L.; Xu, Z. G.; Kang, Y. J.; Xue, P. Catalytically active CoFe2O4 nanoflowers for augmented sonodynamic and chemodynamic combination therapy with elicitation of robust immune response. ACS Nano 2021, 15, 11953–11969.

13

Chen, T.; Hou, P. D.; Zhang, Y. F.; Ao, R. J.; Su, L. C.; Jiang, Y. F.; Zhang, Y. L.; Cai, H. L.; Wang, J.; Chen, Q. S. et al. Singlet oxygen generation in dark-hypoxia by catalytic microenvironment-tailored nanoreactors for NIR-II fluorescence-monitored chemodynamic therapy. Angew. Chem., Int. Ed. 2021, 60, 15006–15012.

14

Wang, Z.; Liu, B.; Sun, Q. Q.; Feng, L. L.; He, F.; Yang, P. P.; Gai, S. L.; Quan, Z. W.; Lin, J. Upconverted metal-organic framework janus architecture for near-infrared and ultrasound co-enhanced high performance tumor therapy. ACS Nano 2021, 15, 12342–12357.

15

Zou, J. H.; Li, L.; Zhu, J. W.; Li, X. C.; Yang, Z.; Huang, W.; Chen, X. Y. Singlet oxygen “afterglow” therapy with NIR-II fluorescent molecules. Adv. Mater. 2021, 33, 2103627.

16

Shi, L. N.; Wang, Y. J.; Zhang, C.; Zhao, Y.; Lu, C.; Yin, B. L.; Yang, Y.; Gong, X. Y.; Teng, L. L.; Liu, Y. L. et al. An acidity-unlocked magnetic nanoplatform enables self-boosting ROS generation through upregulation of lactate for imaging-guided highly specific chemodynamic therapy. Angew. Chem., Int. Ed. 2021, 60, 9562–9572.

17

Jana, D.; Wang, D. D.; Bindra, A. K.; Guo, Y.; Liu, J. W.; Zhao, Y. L. Ultrasmall alloy nanozyme for ultrasound- and near-infrared light-promoted tumor ablation. ACS Nano 2021, 15, 7774–7782.

18

Hu, W.; Xiao, T. T.; Li, D.; Fan, Y.; Xing, L. X.; Wang, X. P.; Li, Y. L.; Shi, X. Y.; Shen, M. W. Intelligent molybdenum disulfide complexes as a platform for cooperative imaging-guided tri-mode chemo-photothermo-immunotherapy. Adv. Sci. 2021, 8, 2100165.

19

Pu, Y. Y.; Yin, H. H.; Dong, C. H.; Xiang, H. J.; Wu, W. C.; Zhou, B. G.; Du, D.; Chen, Y.; Xu, H. X. Sono-controllable and ROS-sensitive CRISPR-Cas9 genome editing for augmented/synergistic ultrasound tumor nanotherapy. Adv. Mater. 2021, 33, 2104641.

20

Sun, Y. D.; Shi, H.; Cheng, X. Y.; Wu, L. Y.; Wang, Y. Q.; Zhou, Z. Y.; He, J.; Chen, H. Y.; Ye, D. J. Degradable hybrid CuS nanoparticles for imaging-guided synergistic cancer therapy via low-power NIR-II light excitation. CCS Chem. 2021, 3, 1336–1349.

21

Sun, Y. D.; An, C. Y.; Wu, L. Y.; Zeng, W. H.; Wang, J. F.; Wang, Y. F.; He, J.; Gao, G. D.; Ye, D. J. Degradable FeCuS-lipid nanoparticles confer ultrasound-activated CO release and O2-independent radical production for synergistic therapy. ACS Nano 2021, 15, 16298–16313.

22

Wang, S. L.; Zhang, L. L.; Zhao, J. J.; He, M.; Huang, Y.; Zhao, S. L. A tumor microenvironment-induced absorption red-shifted polymer nanoparticle for simultaneously activated photoacoustic imaging and photothermal therapy. Sci. Adv. 2021, 7, eabe3588.

23

Chen, Y.; Wang, M.; Zheng, K.; Ren, Y. G.; Xu, H.; Yu, Z. Z.; Zhou, F. F.; Liu, C. B.; Qu, J. L.; Song, J. Antimony nanopolyhedrons with tunable localized surface plasmon resonances for highly effective photoacoustic-imaging-guided synergistic photothermal/immunotherapy. Adv. Mater. 2021, 33, 2100039.

24

Ma, Y.; Xu, L.; Yin, B. L.; Shang, J. H.; Chen, F. F.; Xu, J. T.; Song, Z. L.; Nan, B.; Song, G. S.; Zhang, X. B. Ratiometric semiconducting polymer nanoparticle for reliable photoacoustic imaging of pneumonia-induced vulnerable atherosclerotic plaque in vivo. Nano Lett. 2021, 21, 4484–4493.

25

Armanetti, P.; Chillà, A.; Margheri, F.; Biagioni, A.; Menichetti, L.; Margheri, G.; Ratto, F.; Centi, S.; Bianchini, F.; Severi, M. et al. Enhanced antitumoral activity and photoacoustic imaging properties of AuNP-enriched endothelial colony forming cells on melanoma. Adv. Sci. 2021, 8, 2001175.

26

Chen, J. Q.; Sedgwick, A. C.; Sen, S.; Ren, Y. G.; Sun, Q. C.; Chau, C.; Arambula, J. F.; Sarma, T.; Song, L.; Sessler, J. L. et al. Expanded porphyrins: Functional photoacoustic imaging agents that operate in the NIR-II region. Chem. Sci. 2021, 12, 9916–9921.

27

Chen, T.; Su, L. C.; Ge, X. G.; Zhang, W. M.; Li, Q. Q.; Zhang, X.; Ye, J. M.; Lin, L. S.; Song, J. B.; Yang, H. H. Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemo-radiotherapy using hybrid plasmonic-fluorescent assemblies. Nano Res. 2020, 13, 3268–3277.

28

Ruan, J.; Liu, H.; Chen, B. J.; Wang, F.; Wang, W. N.; Zha, Z. B.; Qian, H. S.; Miao, Z. H.; Sun, J. N.; Tian, T. et al. Interfacially engineered ZnxMn1−xS@polydopamine hollow nanospheres for glutathione depleting photothermally enhanced chemodynamic therapy. ACS Nano 2021, 15, 11428–11440.

29

Lu, J. H.; Cai, L. L.; Dai, Y.; Liu, Y. W.; Zuo, F. M.; Ni, C.; Shi, M. L.; Li, J. J. Polydopamine-based nanoparticles for photothermal therapy/chemotherapy and their synergistic therapy with autophagy inhibitor to promote antitumor treatment. Chem. Rec. 2021, 21, 781–796.

30

Huang, C. L.; Zhang, L.; Guo, Q.; Zuo, Y. Y.; Wang, N. N.; Wang, H.; Kong, D. L.; Zhu, D. W.; Zhang, L. H. Robust nanovaccine based on polydopamine-coated mesoporous silica nanoparticles for effective photothermal-immunotherapy against melanoma. Adv. Funct. Mater. 2021, 31, 2010637.

31

Lynge, M. E.; van der Westen, R.; Postmab, A.; Städler, B. Polydopamine—A nature-inspired polymer coating for biomedical science. Nanoscale 2011, 3, 4916–4928.

32

Sang, W.; Zhang, Z.; Dai, Y. L.; Chen, X. Y. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem. Soc. Rev. 2019, 48, 3771–3810.

33

Wang, J. P.; Sun, J. Y.; Hu, W.; Wang, Y. H.; Chou, T.; Zhang, B. L.; Zhang, Q.; Ren, L.; Wang, H. J. A porous Au@Rh bimetallic core-shell nanostructure as an H2O2-driven oxygenerator to alleviate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 2020, 32, 2001862.

34

Xiang, H. D.; Wu, Y. Z.; Zhu, X. Y.; She, M. Y.; An, Q.; Zhou, R. Y.; Xu, P.; Zhao, F.; Yan, L.; Zhao, Y. L. Highly stable silica-coated bismuth nanoparticles deliver tumor microenvironment-responsive prodrugs to enhance tumor-specific photoradiotherapy. J. Am. Chem. Soc. 2021, 143, 11449–11461.

35

Wu, Y. F.; Chen, Z. X.; Yao, Z. P.; Zhao, K. G.; Shao, F. Y.; Su, J.; Liu, S. Q. Black phosphorus quantum dots encapsulated biodegradable hollow mesoporous MnO2: Dual-modality cancer imaging and synergistic chemo-phototherapy. Adv. Funct. Mater. 2021, 31, 2104643.

36

Liu, Y.; Wang, M.; Cao, L. J.; Yang, M. Y.; Cheng, S. H. S.; Cao, C. W.; Leung, K. L.; Chung, C. Y.; Lu, Z. G. Interfacial redox reaction-directed synthesis of silver@cerium oxide core-shell nanocomposites as catalysts for rechargeable lithium-air batteries. J. Power Sources 2015, 286, 136–144.

37

Singh, R.; Bhateria, R. Core-shell nanostructures: A simplest two-component system with enhanced properties and multiple applications. Environ. Geochem. Health 2021, 43, 2459–2482.

38

Wang, J.; Liu, Y. X.; Li, X. L.; Chen, H. Y.; Xu, J. J. Core-shell plasmonic nanomaterials toward: Dual-mode imaging analysis of glutathione and enhanced chemodynamic therapy. Anal. Chem. 2021, 93, 10317–10325.

39

Manshian, B. B.; Jimenez, J.; Himmelreich, U.; Soenen, S. J. Presence of an immune system increases anti-tumor effect of Ag nanoparticle treated mice. Adv. Healthc. Mater. 2017, 6, 1601099.

40

Zhang, Y. F.; Yang, Y. C.; Jiang, S. S.; Li, F.; Lin, J.; Wang, T. F.; Huang, P. Degradable silver-based nanoplatform for synergistic cancer starving-like/metal ion therapy. Mater. Horiz. 2019, 6, 169–175.

41

Chong, Y.; Huang, J.; Xu, X. Y.; Yu, C. G.; Ning, X. Y.; Fan, S. J.; Zhang, Z. J. Hyaluronic acid-modified Au-Ag alloy nanoparticles for radiation/nanozyme/Ag+ multimodal synergistically enhanced cancer therapy. Bioconjugate Chem. 2020, 31, 1756–1765.

42

Huo, J. J.; Jia, Q. Y.; Huang, H.; Zhang, J.; Li, P.; Dong, X. C.; Huang, W. Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. Chem. Soc. Rev. 2021, 50, 8762–8789.

43

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics. Angew. Chem., Int. Ed. 2008, 48, 60–103.

44

Li, H. Q.; Xi, J. X.; Donaghue, A. G.; Keum, J.; Zhao, Y.; An, K.; McKenzie, E. R.; Ren, F. Synthesis and catalytic performance of polydopamine supported metal nanoparticles. Sci. Rep. 2020, 10, 10416.

45

Chaudhuri, R. G.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433.

46

Mantri, Y.; Jokerst, J. V. Engineering plasmonic nanoparticles for enhanced photoacoustic imaging. ACS Nano 2020, 14, 9408–9422.

47

Chen, Y. S.; Frey, W.; Kim, S.; Kruizinga, P.; Homan, K.; Emelianov, S. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 2011, 11, 348–354.

48

Yin, B. L.; Wang, Y. P.; Zhang, C.; Zhao, Y.; Wang, Y. J.; Teng, L. L.; Yang, Y.; Zeng, Z. B.; Huan, S. Y.; Song, G. S. et al. Oxygen-embedded quinoidal acene based semiconducting chromophore nanoprobe for amplified photoacoustic imaging and photothermal therapy. Anal. Chem. 2019, 91, 15275–15283.

49

Feng, L. L.; Liu, B.; Xie, R.; Wang, D. D.; Qian, C.; Zhou, W. Q.; Liu, J. W.; Jana, D.; Yang, P. P.; Zhao, Y. L. An ultrasmall SnFe2O4 nanozyme with endogenous oxygen generation and glutathione depletion for synergistic cancer therapy. Adv. Funct. Mater. 2020, 31, 2006216.

50

Liu, C. H.; Cao, Y.; Cheng, Y. R.; Wang, D. D.; Xu, T. L.; Su, L.; Zhang, X. J.; Dong, H. F. An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nat. Commun. 2020, 11, 1735.

Nano Research
Pages 8291-8303
Cite this article:
Li X-R, Yin B, Gao L, et al. One-step reduction-encapsulated synthesis of Ag@polydopamine multicore-shell nanosystem for enhanced photoacoustic imaging and photothermal-chemodynamic cancer therapy. Nano Research, 2022, 15(9): 8291-8303. https://doi.org/10.1007/s12274-022-4474-4
Topics:

985

Views

11

Crossref

11

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 28 March 2022
Revised: 22 April 2022
Accepted: 25 April 2022
Published: 12 June 2022
© Tsinghua University Press 2022
Return