Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The fundamental understanding of the mechanism underlying the early stages of crystallization of hexagonal-close-packed (hcp) nanocrystals is crucial for their synthesis with desired properties, but it remains a significant challenge. Here, we report using in situ liquid cell transmission electron microscopy (TEM) to directly capture the dynamic nucleation process and track the real-time growth pathway of hcp Ni nanocrystals at the atomic scale. It is demonstrated that the growth of amorphous-phase-mediated hcp Ni nanocrystals is from the metal-rich liquid phases. In addition, the reshaped preatomic facet development of a single nanocrystal is also imaged. Theoretical calculations further identify the non-classical features of hcp Ni crystallization. These discoveries could enrich the nucleation and growth model theory and provide useful information for the rational design of synthesis pathways of hcp nanocrystals.
Shao, Q.; Wang, Y.; Yang, S. Z.; Lu, K. Y.; Zhang, Y.; Tang, C. Y.; Song, J.; Feng, Y. G.; Xiong, L. K.; Peng, Y. et al. Stabilizing and activating metastable nickel nanocrystals for highly efficient hydrogen evolution electrocatalysis. ACS Nano 2018, 12, 11625–11631.
Zhuang, J. H.; Liu, X. L.; Ji, Y. J.; Gu, F. N.; Xu, J.; Han, Y. F.; Xu, G. W.; Zhong, Z. Y.; Su, F. B. Phase-controlled synthesis of Ni nanocrystals with high catalytic activity in 4-nitrophenol reduction. J. Mater. Chem. A 2020, 8, 22143–22154.
Han, M.; Liu, Q.; He, J.; Song, Y.; Xu, Z.; Zhu, J. M. Controllable synthesis and magnetic properties of cubic and hexagonal phase NICKEL nanocrystals. Adv. Mater. 2007, 19, 1096–1100.
LaGrow, A. P.; Cheong, S.; Watt, J.; Ingham, B.; Toney, M. F.; Jefferson, D. A.; Tilley, R. D. Can polymorphism be used to form branched metal nanostructures? Adv. Mater. 2013, 25, 1552–1556.
Kim, C.; Kim, C.; Lee, K.; Lee, H. Shaped Ni nanoparticles with an unconventional hcp crystalline structure. Chem. Commun. 2014, 50, 6353–6356.
Singh, J.; Kaurav, N.; Lallac, N. P.; Okram, G. S. Naturally self-assembled nickel nanolattice. J. Mater. Chem. C 2014, 2, 8918–8924.
Tan, X. Y.; Geng, S. Z.; Ji, Y. J.; Shao, Q.; Zhu, T.; Wang, P. T.; Li, Y. Y.; Huang, X. Q. Closest packing polymorphism interfaced metastable transition metal for efficient hydrogen evolution. Adv. Mater. 2020, 32, 2002857.
He, K.; Sawczyk, M.; Liu, C.; Yuan, Y. F.; Song, B. A.; Deivanayagam, R.; Nie, A. M.; Hu, X. B.; Dravid, V. P.; Lu, J. et al. Revealing nanoscale mineralization pathways of hydroxyapatite using in situ liquid cell transmission electron microscopy. Sci. Adv. 2020, 6, eaaz7524.
De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Lee Penn, R.; Whitelam, S.; Joester, D.; Zhang, H. Z.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760.
Woehl, T. J. Metal nanocrystal formation during liquid phase transmission electron microscopy: Thermodynamics and kinetics of precursor conversion, nucleation, and growth. Chem. Mater. 2020, 32, 7569–7581.
Cölfen, H.; Antonietti, M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. , Int. Ed. 2005, 44, 5576–5591.
Navrotsky, A. Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proc. Natl. Acad. Sci. USA 2004, 101, 12096–12101.
Tan, S. F.; Chee, S. W.; Lin, G.; Mirsaidov, U. Direct observation of interactions between nanoparticles and nanoparticle self-assembly in solution. Acc. Chem. Res. 2017, 50, 1303–1312.
Zheng, H. M. Imaging, understanding, and control of nanoscale materials transformations. MRS Bull. 2021, 46, 443–450.
Zheng, W. J.; Hauwiller, M. R.; Liang, W. I.; Ophus, C.; Ercius, P.; Chan, E. M.; Chu, Y. H.; Asta, M.; Du, X. W.; Alivisatos, A. P. et al. Real time imaging of two-dimensional iron oxide spherulite nanostructure formation. Nano Res. 2019, 12, 2889–2893.
Liao, H. G.; Zherebetskyy, D.; Xin, H. L.; Czarnik, C.; Ercius, P.; Elmlund, H.; Pan, M.; Wang, L. W.; Zheng, H. M. Facet development during platinum nanocube growth. Science 2014, 345, 916–919.
Liao, H. G.; Zheng, H. M. Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution. J. Am. Chem. Soc. 2013, 135, 5038–5043.
Kim, B. H.; Heo, J.; Kim, S.; Reboul, C. F.; Chun, H.; Kang, D.; Bae, H.; Hyun, H.; Lim, J.; Lee, H. et al. Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution. Science 2020, 368, 60–67.
Wang, M.; Leff, A. C.; Li, Y.; Woehl, T. J. Visualizing ligand-mediated bimetallic nanocrystal formation pathways with in situ liquid-phase transmission electron microscopy synthesis. ACS Nano 2021, 15, 2578–2588.
Liu, Z. M.; Zhang, Z. S.; Wang, Z. M.; Jin, B.; Li, D. S.; Tao, J. H.; Tang, R. K.; De Yoreo, J. J. Shape-preserving amorphous-to-crystalline transformation of CaCO3 revealed by in situ TEM. Proc. Natl. Acad. Sci. USA 2020, 117, 3397–3404.
Ke, C. Z.; Xiao B. S.; Li, M.; Lu, J. Y.; He, Y.; Zhang, L.; Zhang, Q. B. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy. Energy Storage Sci. Technol. 2021, 10, 1219–1236.
Feng, X. Y.; Wu, H. H.; Gao, B.; Świętosławski, M.; He, X.; Zhang, Q. B. Lithiophilic N-doped carbon bowls induced Li deposition in layeredgraphene film for advanced lithium metal batteries. Nano Res. 2022, 15, 352–360.
Sutter, P.; Sutter, E. Real-time electron microscopy of nanocrystal synthesis, transformations, and self-assembly in solution. Acc. Chem. Res. 2021, 54, 11–21.
Loh, N. D.; Sen, S.; Bosman, M.; Tan, S. F.; Zhong, J.; Nijhuis, C. A.; Král, P.; Matsudaira, P.; Mirsaidov, U. Multistep nucleation of nanocrystals in aqueous solution. Nat. Chem. 2017, 9, 77–82.
Jin, B.; Wang, Y. M.; Liu, Z. M.; France-Lanord, A.; Grossman, J. C.; Jin, C. H.; Tang, R. K. Revealing the cluster-cloud and its role in nanocrystallization. Adv. Mater. 2019, 31, 1808225.
Dachraoui, W.; Keller, D.; Henninen, T. R.; Ashton, O. J.; Erni, R. Atomic mechanisms of nanocrystallization via cluster-clouds in solution studied by liquid-phase scanning transmission electron microscopy. Nano Lett. 2021, 21, 2861–2869.
Yang, J.; Koo, J.; Kim, S.; Jeon, S.; Choi, B. K.; Kwon, S.; Kim, J.; Kim, B. H.; Lee, W. C.; Lee, W. B. et al. Amorphous-phase-mediated crystallization of Ni nanocrystals revealed by high-resolution liquid-phase electron microscopy. J. Am. Chem. Soc. 2019, 141, 763–768.
Zhang, J. Y.; Li, G.; Liao, H. G.; Sun, S. G. Tracking the atomic pathways of Pt3Ni-Ni(OH)2 core-shell structures at the gas-liquid interface by in-situ liquid cell TEM. Sci. China Chem. 2020, 63, 513–518.
Zhang, J. Y.; Zhang, X.; Yang, D. P.; Zhao, P. Ligand-induced motion and self-assembly pathways between nanocubes. J. Phys. Chem. Lett. 2021, 12, 2429–2436.
Zhang, J. Y.; Jiang, Y. H.; Fan, Q. Y.; Qu, M.; He, N.; Deng, J. X.; Sun, Y.; Cheng, J.; Liao, H. G.; Sun, S. G. Atomic scale tracking of single layer oxide formation: Self-peeling and phase transition in solution. Small Methods 2021, 5, 20001234.
Zhang, J. Y. Atomic-scale imaging of the growth and transformation of Pt3Ni-NiO nanoparticles. New J. Chem. 2021, 45, 2217–2220.
VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approachPhys. Comput. Phys. Commun. 2005, 167, 103–128.
VandeVondele, J.; Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 114105.
Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B. 1996, 54, 1703–1710.
Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B. 1998, 58, 3641–3662.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Liu, J. X.; Zhang, B. Y.; Chen, P. P.; Su, H. Y.; Li, W. X. CO dissociation on face-centered cubic and hexagonal close-packed nickel catalysts: A first-principles study. J. Phys. Chem. C 2016, 120, 24895–24903.