AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Atomic mechanisms of hexagonal close-packed Ni nanocrystallization revealed by in situ liquid cell transmission electron microscopy

Junyu Zhang1( )Miao Li2Zewen Kang3Bensheng Xiao2Haichen Lin7Jingyu Lu6Haodong Liu7Xue Zhang4( )Dong-Liang Peng2Qiaobao Zhang2,5( )
Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen 361021, China
Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China
College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
Center for Materials and Interfaces, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen 518055, China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
Chemical Engineering, University of California San Diego, La Jolla, CA 92093, USA
Show Author Information

Graphical Abstract

The amorphous-phase-mediated crystallization of Ni hexagonal close-packed nanoparticles in homogeneous solution through spinodal decomposition, solidification and crystallization is explicitly unraveled by combining in situ liquid cell transmission electron microscopy (TEM) and theoretical analysis.

Abstract

The fundamental understanding of the mechanism underlying the early stages of crystallization of hexagonal-close-packed (hcp) nanocrystals is crucial for their synthesis with desired properties, but it remains a significant challenge. Here, we report using in situ liquid cell transmission electron microscopy (TEM) to directly capture the dynamic nucleation process and track the real-time growth pathway of hcp Ni nanocrystals at the atomic scale. It is demonstrated that the growth of amorphous-phase-mediated hcp Ni nanocrystals is from the metal-rich liquid phases. In addition, the reshaped preatomic facet development of a single nanocrystal is also imaged. Theoretical calculations further identify the non-classical features of hcp Ni crystallization. These discoveries could enrich the nucleation and growth model theory and provide useful information for the rational design of synthesis pathways of hcp nanocrystals.

Electronic Supplementary Material

Video
12274_2022_4475_MOESM2_ESM.mp4
12274_2022_4475_MOESM3_ESM.mp4
12274_2022_4475_MOESM4_ESM.mp4
12274_2022_4475_MOESM5_ESM.mp4
12274_2022_4475_MOESM6_ESM.mp4
Download File(s)
12274_2022_4475_MOESM1_ESM.pdf (1.9 MB)

References

1

Shao, Q.; Wang, Y.; Yang, S. Z.; Lu, K. Y.; Zhang, Y.; Tang, C. Y.; Song, J.; Feng, Y. G.; Xiong, L. K.; Peng, Y. et al. Stabilizing and activating metastable nickel nanocrystals for highly efficient hydrogen evolution electrocatalysis. ACS Nano 2018, 12, 11625–11631.

2

Zhuang, J. H.; Liu, X. L.; Ji, Y. J.; Gu, F. N.; Xu, J.; Han, Y. F.; Xu, G. W.; Zhong, Z. Y.; Su, F. B. Phase-controlled synthesis of Ni nanocrystals with high catalytic activity in 4-nitrophenol reduction. J. Mater. Chem. A 2020, 8, 22143–22154.

3

Han, M.; Liu, Q.; He, J.; Song, Y.; Xu, Z.; Zhu, J. M. Controllable synthesis and magnetic properties of cubic and hexagonal phase NICKEL nanocrystals. Adv. Mater. 2007, 19, 1096–1100.

4

LaGrow, A. P.; Cheong, S.; Watt, J.; Ingham, B.; Toney, M. F.; Jefferson, D. A.; Tilley, R. D. Can polymorphism be used to form branched metal nanostructures? Adv. Mater. 2013, 25, 1552–1556.

5
Richard-Plouet, M.; Guillot, M.; Vilminot, S. ; Leuvrey, C.; Estournès, C.; Kurmoo, M. hcp and fcc Nickel nanoparticles prepared from organically functionalized layered phyllosilicates of nickel(II). Chem. Mater. 2007, 19, 865–871.https://doi.org/10.1021/cm062521c
6

Kim, C.; Kim, C.; Lee, K.; Lee, H. Shaped Ni nanoparticles with an unconventional hcp crystalline structure. Chem. Commun. 2014, 50, 6353–6356.

7

Singh, J.; Kaurav, N.; Lallac, N. P.; Okram, G. S. Naturally self-assembled nickel nanolattice. J. Mater. Chem. C 2014, 2, 8918–8924.

8

Tan, X. Y.; Geng, S. Z.; Ji, Y. J.; Shao, Q.; Zhu, T.; Wang, P. T.; Li, Y. Y.; Huang, X. Q. Closest packing polymorphism interfaced metastable transition metal for efficient hydrogen evolution. Adv. Mater. 2020, 32, 2002857.

9

He, K.; Sawczyk, M.;  Liu, C.; Yuan, Y. F.; Song, B. A.; Deivanayagam, R.; Nie, A. M.; Hu, X. B.; Dravid, V. P.; Lu, J. et al. Revealing nanoscale mineralization pathways of hydroxyapatite using in situ liquid cell transmission electron microscopy. Sci. Adv. 2020, 6, eaaz7524.

10
Nielsen, M. H. ; Aloni, S. ; De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 2014, 345, 1158–1162.https://doi.org/10.1126/science.1254051
11

De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Lee Penn, R.; Whitelam, S.; Joester, D.; Zhang, H. Z.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760.

12

Woehl, T. J. Metal nanocrystal formation during liquid phase transmission electron microscopy: Thermodynamics and kinetics of precursor conversion, nucleation, and growth. Chem. Mater. 2020, 32, 7569–7581.

13
Lupulescu, A. I. ; Rimer, J. D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization. Science 2014, 344, 729–732.https://doi.org/10.1126/science.1250984
14

Cölfen, H.; Antonietti, M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. , Int. Ed. 2005, 44, 5576–5591.

15

Navrotsky, A. Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proc. Natl. Acad. Sci. USA 2004, 101, 12096–12101.

16

Tan, S. F.; Chee, S. W.; Lin, G.; Mirsaidov, U. Direct observation of interactions between nanoparticles and nanoparticle self-assembly in solution. Acc. Chem. Res. 2017, 50, 1303–1312.

17

Zheng, H. M. Imaging, understanding, and control of nanoscale materials transformations. MRS Bull. 2021, 46, 443–450.

18

Zheng, W. J.; Hauwiller, M. R.; Liang, W. I.; Ophus, C.; Ercius, P.; Chan, E. M.; Chu, Y. H.; Asta, M.; Du, X. W.; Alivisatos, A. P. et al. Real time imaging of two-dimensional iron oxide spherulite nanostructure formation. Nano Res. 2019, 12, 2889–2893.

19

Liao, H. G.; Zherebetskyy, D.; Xin, H. L.; Czarnik, C.; Ercius, P.; Elmlund, H.; Pan, M.; Wang, L. W.; Zheng, H. M. Facet development during platinum nanocube growth. Science 2014, 345, 916–919.

20

Liao, H. G.; Zheng, H. M. Liquid cell transmission electron microscopy study of platinum iron nanocrystal growth and shape evolution. J. Am. Chem. Soc. 2013, 135, 5038–5043.

21

Kim, B. H.; Heo, J.; Kim, S.; Reboul, C. F.; Chun, H.; Kang, D.; Bae, H.; Hyun, H.; Lim, J.; Lee, H. et al. Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution. Science 2020, 368, 60–67.

22

Wang, M.; Leff, A. C.; Li, Y.; Woehl, T. J. Visualizing ligand-mediated bimetallic nanocrystal formation pathways with in situ liquid-phase transmission electron microscopy synthesis. ACS Nano 2021, 15, 2578–2588.

23

Liu, Z. M.; Zhang, Z. S.; Wang, Z. M.; Jin, B.; Li, D. S.; Tao, J. H.; Tang, R. K.; De Yoreo, J. J. Shape-preserving amorphous-to-crystalline transformation of CaCO3 revealed by in situ TEM. Proc. Natl. Acad. Sci. USA 2020, 117, 3397–3404.

24

Ke, C. Z.; Xiao B. S.; Li, M.; Lu, J. Y.; He, Y.; Zhang, L.; Zhang, Q. B. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy. Energy Storage Sci. Technol. 2021, 10, 1219–1236.

25

Feng, X. Y.; Wu, H. H.; Gao, B.; Świętosławski, M.; He, X.; Zhang, Q. B. Lithiophilic N-doped carbon bowls induced Li deposition in layeredgraphene film for advanced lithium metal batteries. Nano Res. 2022, 15, 352–360.

26

Sutter, P.; Sutter, E. Real-time electron microscopy of nanocrystal synthesis, transformations, and self-assembly in solution. Acc. Chem. Res. 2021, 54, 11–21.

27

Loh, N. D.; Sen, S.; Bosman, M.; Tan, S. F.; Zhong, J.; Nijhuis, C. A.; Král, P.; Matsudaira, P.; Mirsaidov, U. Multistep nucleation of nanocrystals in aqueous solution. Nat. Chem. 2017, 9, 77–82.

28
Zhang, J. Y. ; Sun, S. G. ; Liao, H. G. In-situ liquid cell TEM investigation on assembly and symmetry transformation of Pt superlattice. Sci. China Mater. 2020, 63, 602–610.https://doi.org/10.1007/s40843-019-1219-y
29

Jin, B.; Wang, Y. M.; Liu, Z. M.; France-Lanord, A.; Grossman, J. C.; Jin, C. H.; Tang, R. K. Revealing the cluster-cloud and its role in nanocrystallization. Adv. Mater. 2019, 31, 1808225.

30

Dachraoui, W.; Keller, D.; Henninen, T. R.; Ashton, O. J.; Erni, R. Atomic mechanisms of nanocrystallization via cluster-clouds in solution studied by liquid-phase scanning transmission electron microscopy. Nano Lett. 2021, 21, 2861–2869.

31

Yang, J.; Koo, J.; Kim, S.; Jeon, S.; Choi, B. K.; Kwon, S.; Kim, J.; Kim, B. H.; Lee, W. C.; Lee, W. B. et al. Amorphous-phase-mediated crystallization of Ni nanocrystals revealed by high-resolution liquid-phase electron microscopy. J. Am. Chem. Soc. 2019, 141, 763–768.

32

Zhang, J. Y.; Li, G.; Liao, H. G.; Sun, S. G. Tracking the atomic pathways of Pt3Ni-Ni(OH)2 core-shell structures at the gas-liquid interface by in-situ liquid cell TEM. Sci. China Chem. 2020, 63, 513–518.

33

Zhang, J. Y.; Zhang, X.; Yang, D. P.; Zhao, P. Ligand-induced motion and self-assembly pathways between nanocubes. J. Phys. Chem. Lett. 2021, 12, 2429–2436.

34

Zhang, J. Y.; Jiang, Y. H.; Fan, Q. Y.; Qu, M.; He, N.; Deng, J. X.; Sun, Y.; Cheng, J.; Liao, H. G.; Sun, S. G. Atomic scale tracking of single layer oxide formation: Self-peeling and phase transition in solution. Small Methods 2021, 5, 20001234.

35

Zhang, J. Y. Atomic-scale imaging of the growth and transformation of Pt3Ni-NiO nanoparticles. New J. Chem. 2021, 45, 2217–2220.

36
Geng, L. ; Liu, Q. N. ; Chen, J. Z. ; Jia, P. ; Ye, H. J. ; Yan, J. T. ; Zhang, L. Q. ; Tang, Y. F. ; Huang, J. Y. In situ observation of electrochemical Ostwald ripening during sodium deposition. Nano Res. 2022, 15, 2650–2654.https://doi.org/10.1007/s12274-021-3861-6
37

VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approachPhys. Comput. Phys. Commun. 2005, 167, 103–128.

38

VandeVondele, J.; Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 114105.

39

Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B. 1996, 54, 1703–1710.

40

Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B. 1998, 58, 3641–3662.

41

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

42

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

43

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

44

Liu, J. X.; Zhang, B. Y.; Chen, P. P.; Su, H. Y.; Li, W. X. CO dissociation on face-centered cubic and hexagonal close-packed nickel catalysts: A first-principles study. J. Phys. Chem. C 2016, 120, 24895–24903.

Nano Research
Pages 6772-6778
Cite this article:
Zhang J, Li M, Kang Z, et al. Atomic mechanisms of hexagonal close-packed Ni nanocrystallization revealed by in situ liquid cell transmission electron microscopy. Nano Research, 2022, 15(7): 6772-6778. https://doi.org/10.1007/s12274-022-4475-3
Topics:

1347

Views

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 27 January 2022
Revised: 24 April 2022
Accepted: 26 April 2022
Published: 13 May 2022
© Tsinghua University Press 2022
Return