AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction

Jian-Chao Jiang1,2,§Jun-Chi Chen2,§Meng-die Zhao1Qi Yu1( )Yang-Gang Wang2( )Jun Li2,3
School of Materials Science and Engineering, and Shaanxi Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, China
Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China

§ Jian-Chao Jiang and Jun-Chi Chen contributed equally to this work.

Show Author Information

Graphical Abstract

Cu-based single-atom alloy catalysts for CO2 reduction reaction converting to high added value products have been calculated by density functional theory (DFT) method.

Abstract

Electrochemical CO2-reduction reaction (CO2RR) is a promising way to alleviate energy crisis and excessive carbon emission. The Cu-based electrocatalysts have been considered for CO2RR to generate hydrocarbons and alcohols. However, the application of Cu electrocatalysts has been restricted by a high onset potential for CO2RR and low selectivity. In this study, we have designed a series of Cu-based single-atom alloy catalysts (SAAs), denoted as TM1/Cu (111), by doping isolated 3d-transition metal (TM) atom onto the Cu (111) surface. We theoretically evaluated their stability and investigated the activity and selectivity toward CO2RR. Compared to the pure Cu catalyst, the majority TM1/Cu (111) catalysts are more favorable for hydrogenating CO2 and can efficiently avoid the hydrogen-evolution reaction due to the strong binding of carbonaceous intermediates. Based on the density functional theory calculations, instead of the HCOOH or CO products, the initial hydrogenation of CO2 on SAAs would form the *CO intermediate, which could be further hydrogenated to produce methane. In addition, we have identified the bond angle of adsorbed *CO2 can describe the CO2 activation ability of TM1/Cu (111) and the binding energy of *OH can describe the CO2RR activity of TM1/Cu (111). We speculated that the V/Cu (111) can show the best activity and selectivity for CO2RR among all the 3d-TM-doped TM1/Cu (111). This work could provide a rational guide to the design of new type of single-atom catalysts for efficient CO2RR.

Electronic Supplementary Material

Download File(s)
12274_2022_4476_MOESM1_ESM.pdf (1.9 MB)

References

1

Karl, T. R.; Trenberth, K. E. Modern global climate change. Science 2003, 302, 1719–1723.

2

Olah, G. A.; Prakash, G. K. S.; Goeppert, A. Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc. 2011, 133, 12881–12898.

3

Kim, J.; Johnson, T. A.; Miller, J. E.; Stechel, E. B.; Maravelias, C. T. Fuel production from CO2 using solar-thermal energy: System level analysis. Energy Environ. Sci. 2012, 5, 8417–8429.

4

Li, Z. H.; Shi, R.; Zhao, J. Q.; Zhang, T. R. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Res. 2021, 14, 4828–4832.

5

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

6

Meng, Y. C.; Kuang, S. Y.; Liu, H.; Fan, Q.; Ma, X. B.; Zhang, S. Recent advances in electrochemical CO2 reduction using copper-based catalysts. Acta Phys. Chim. Sin. 2021, 37, 2006034.

7

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res, 2022, 15, 1730–1752.

8

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 134, e202114450.

9

Lu, Q.; Jiao, F. Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering. Nano Energy 2016, 29, 439–456.

10

Sun, K.; Ji, Y. J.; Liu, Y. Y.; Wang, Z. J. Synergies between electronic and geometric effects of Mo-doped Au nanoparticles for effective CO2 electrochemical reduction. J. Mater. Chem. A 2020, 8, 12291–12295.

11

Sun, K.; Wu, L. N.; Qin, W.; Zhou, J. G.; Hu, Y. F.; Jiang, Z. H.; Shen, B. Z.; Wang, Z. J. Enhanced electrochemical reduction of CO2 to CO on Ag electrocatalysts with increased unoccupied density of states. J. Mater. Chem. A 2016, 4, 12616–12623.

12

Jiang, S. Y.; Liu, J. X.; Zhao, K.; Cui, D. D.; Liu, P. R.; Yin, H. J.; Al-Mamun, M.; Lowe, S. E.; Zhang, W. P.; Zhong, Y. L. et al. Ru(bpy)32+-sensitized {001} facets LiCoO2 nanosheets catalyzed CO2 reduction reaction with 100% carbonaceous products. Nano Res. 2022, 15, 1061–1068.

13

Gao, D. F.; Zhou, H.; Cai, F.; Wang, J. G.; Wang, G. X.; Bao, X. H. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal. 2018, 8, 1510–1519.

14

Cai, F.; Gao, D. F.; Zhou, H.; Wang, G. X.; He, T.; Gong, H. M.; Miao, S.; Yang, F.; Wang, J. G.; Bao, X. H. Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction. Chem. Sci. 2017, 8, 2569–2573.

15

Nguyen, D. L. T.; Jee, M. S.; Won, D. H.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Effect of halides on nanoporous Zn-based catalysts for highly efficient electroreduction of CO2 to CO. Catal Commun. 2018, 114, 109–113.

16

Xie, H.; Wang, T. Y.; Liang, J. S.; Li, Q.; Sun, S. H. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018, 21, 41–54.

17

Mou, S. Y.; Li, Y. H.; Yue, L. C.; Liang, J.; Luo, Y. L.; Liu, Q.; Li, T. S.; Lu, S. Y.; Asiri, A. M.; Xiong, X. L. et al. Cu2Sb decorated Cu nanowire arrays for selective electrocatalytic CO2 to CO conversion. Nano Res. 2021, 14, 2831–2836.

18
Hori, Y. Electrochemical CO2 reduction on metal electrodes. In Modern Aspects of Electrochemistry. Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E., Eds.; Springer: New York, 2008; pp 89–189.
19

Scholten, F.; Sinev, I.; Bernal, M.; Cuenya, B. R. Plasma-modified dendritic Cu catalyst for CO2 electroreduction. ACS Catal. 2019, 9, 5496–5502.

20

Niu, Z. Z.; Gao, F. Y.; Zhang, X. L.; Yang, P. P.; Liu, R.; Chi, L. P.; Wu, Z. Z.; Qin, S.; Yu, X. X.; Gao, M. R. Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 electroreduction to multicarbon products. J. Am. Chem. Soc. 2021, 143, 8011–8021.

21

Chang, Y. B.; Zhang, C.; Lu, X. L.; Zhang, W.; Lu, T. B. Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products. Nano Res. 2022, 15, 195–201.

22

Peterson, A. A.; Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 2012, 3, 251–258.

23

Liu, J.; Cai, Y. M.; Song, R. B.; Ding, S. C.; Lyu, Z. Y.; Chang, Y. C.; Tian, H. Y.; Zhang, X.; Du, D.; Zhu, W. L. et al. Recent progress on single-atom catalysts for CO2 electroreduction. Mater. Today 2021, 48, 95–114.

24

Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 2014, 136, 14107–14113.

25

Nie, X. W.; Esopi, M. R.; Janik, M. J.; Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps. Angew. Chem., Int. Ed. 2013, 52, 2459–2462.

26

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chem. 2011, 3, 634–641.

27

Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.

28

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

29

Liu, J. C.; Wang, Y. G.; Li, J. Toward rational design of oxide-supported single-atom catalysts: Atomic dispersion of gold on ceria. J. Am. Chem. Soc. 2017, 139, 6190–6199.

30

Rong, P.; Jiang, Y. F.; Wang, Q.; Gu, M.; Jiang, X. L.; Yu, Q. Photocatalytic degradation of methylene blue (MB) with Cu1-ZnO single atom catalysts on graphene-coated flexible substrates. J. Mater. Chem. A 2022, 10, 6231–6241.

31

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

32

Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

33

Qin, R. X.; Liu, P. X.; Fu, G.; Zheng, N. F. Strategies for stabilizing atomically dispersed metal catalysts. Small Methods 2018, 2, 1700286.

34

Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.

35

Watanabe, M.; Shibata, M.; Kato, A.; Azuma, M.; Sakata, T. Design of alloy electrocatalysts for CO2 reduction: III. The selective and reversible reduction of on Cu alloy electrodes. J. Electrochem. Soc. 1991, 138, 3382–3389.

36

Wang, C. Q.; Cao, M. L.; Jiang, X. X.; Wang, M. K.; Shen, Y. A catalyst based on copper-cadmium bimetal for electrochemical reduction of CO2 to CO with high Faradaic efficiency. Electrochim. Acta 2018, 271, 544–550.

37

Hirunsit, P.; Soodsawang, W.; Limtrakul, J. CO2 Electrochemical reduction to methane and methanol on copper-based alloys: Theoretical insight. J. Phys. Chem. C. 2015, 119, 8238–8249.

38

Wang, Z. J.; Yuan, Q.; Shan, J. J.; Jiang, Z. H.; Xu, P.; Hu, Y. F.; Zhou, J. G.; Wu, L. N.; Niu, Z. Z.; Sun, J. M. et al. Highly selective electrocatalytic reduction of CO2 into methane on Cu-Bi nanoalloys. J. Phys. Chem. Lett. 2020, 11, 7261–7266.

39

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

40

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

41

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

42

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

43

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

44

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

45

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

46

Zhuang, T. T.; Liang, Z. Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F. L.; Meng, F.; Min, Y. M.; Quintero-Bermudez, R. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 2018, 1, 421–428.

47

Shi, J. J.; Owen, C. J.; Ngan, H. T.; Qin, S. Y.; Mehar, V.; Sautet, P.; Weaver, J. F. Formation of a Ti-Cu (111) single atom alloy: Structure and CO binding. J. Chem. Phys. 2021, 154, 234703.

48

Patel, D. A.; Hannagan, R. T.; Kress, P. L.; Schilling, A. C.; Çınar, V.; Sykes, E. C. H. Atomic-scale surface structure and CO tolerance of NiCu single-atom alloys. J. Phys. Chem. C 2019, 123, 28142–28147.

49

Long, R.; Li, Y.; Liu, Y.; Chen, S. M.; Zheng, X. S.; Gao, C.; He, C. H.; Chen, N. S.; Qi, Z. M.; Song, L. et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 2017, 139, 4486–4492.

50

Zhong, Y.; Wang, S. N.; Li, M.; Ma, J.; Song, S. C.; Kumar, A.; Duan, H. H.; Kuang, Y.; Sun, X. M. Rational design of copper-based electrocatalysts and electrochemical systems for CO2 reduction: From active sites engineering to mass transfer dynamics. Mater. Today Phys. 2021, 18, 100354.

51

Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.

52

Cheng, T.; Xiao, H.; Goddard, W. A. Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu (100) surface at 298 K from quantum mechanics free energy calculations with explicit water. J. Am. Chem. Soc. 2016, 138, 13802–13805.

Nano Research
Pages 7116-7123
Cite this article:
Jiang J-C, Chen J-C, Zhao M-d, et al. Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction. Nano Research, 2022, 15(8): 7116-7123. https://doi.org/10.1007/s12274-022-4476-2
Topics:

1402

Views

63

Crossref

60

Web of Science

61

Scopus

0

CSCD

Altmetrics

Received: 23 February 2022
Revised: 25 April 2022
Accepted: 26 April 2022
Published: 02 June 2022
© Tsinghua University Press 2022
Return