Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
With the extensive development of nanozymes in recent years, catalytic efficiency has been considered as the Gordian knot that restricts the further applications of nanozyme. Moreover, the usage of layered double hydroxides (LDHs) as antioxidant nanozymes for scavenging reactive oxygen species (ROS) has not been studied. Herein, we report a vacancies-rich monolayer cobalt-alumina LDH nanosheet (m-CoAl-LDH) through a facile direct synthesis method as an efficient nanozyme with superoxide dismutase (SOD)-like activity. The m-CoAl-LDH exhibits a record-breaking catalytic efficiency with the catalytic constant (Kcat) as high as 4.33 × 1011 M−1·s−1. Elucidated by the experimental and theoretical studies, the abundant oxygen and metal vacancies were existed in the single layer for the outstanding performance owing to the increased active sites. In addition, density functional theory (DFT) calculations further reveal the significant role of synergistic effect of oxygen and metal vacancies in reducing the adsorption energy of superoxide (O2•−), which improves the catalytic performance. The m-CoAl-LDH nanosheets were applied in cells to relieving the oxidative damage caused by O2•− in mitochondria. Such vacancy-rich monolayer CoAl-LDH nanosheets represent the first example of LDH nanozyme with specific SOD-like activity as well as record high catalytic efficiency, which may provide deeper insight into efficient nanozyme design by defect-engineering.
Fukai, T.; Ushio-Fukai, M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 2011, 15, 1583–1606.
Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell. Biol. 2018, 217, 1915–1928.
Sheng, Y. W.; Abreu, I. A.; Cabelli, D. E.; Maroney, M. J.; Miller, A. F.; Teixeira, M.; Valentine, J. S. Superoxide dismutases and superoxide reductases. Chem. Rev. 2014, 114, 3854–3918.
Zhao, H. Q.; Zhang, R. F.; Yan, X. Y.; Fan, K. L. Superoxide dismutase nanozymes: An emerging star for anti-oxidation. J. Mater. Chem. B 2021, 9, 6939–6957.
Wang, H.; Wan, K. W.; Shi, X. H. Recent advances in nanozyme research. Adv. Mater. 2019, 31, 1805368.
Yang, B. W.; Chen, Y.; Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881–4985.
Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes(II). Chem. Soc. Rev. 2019, 48, 1004–1076.
Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.
Wu, G.; Berka, V.; Derry, P. J.; Mendoza, K.; Kakadiaris, E.; Roy, T.; Kent, T. A.; Tour, J. M.; Tsai, A. L. Critical comparison of the superoxide dismutase-like activity of carbon antioxidant nanozymes by direct superoxide consumption kinetic measurements. ACS Nano 2019, 13, 11203–11213.
Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.
Korschelt, K.; Ragg, R.; Metzger, C. S.; Kluenker, M.; Oster, M.; Barton, B.; Panthöfer, M.; Strand, D.; Kolb, U.; Mondeshki, M. et al. Glycine-functionalized copper(II) hydroxide nanoparticles with high intrinsic superoxide dismutase activity. Nanoscale 2017, 9, 3952–3960.
Forman, H. J.; Fridovich, I. Superoxide dismutase: A comparison of rate constants. Arch. Biochem. Biophys. 1973, 158, 396–400.
Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 1056–1058.
Ragg, R.; Schilmann, A. M.; Korschelt, K.; Wieseotte, C.; Kluenker, M.; Viel, M.; Völker, L.; Preiß, S.; Herzberger, J.; Frey, H. et al. Intrinsic superoxide dismutase activity of MnO nanoparticles enhances the magnetic resonance imaging contrast. J. Mater. Chem. B 2016, 4, 7423–7428.
Mu, J. S.; Zhao, X.; Li, J.; Yang, E. C.; Zhao, X. J. Novel hierarchical NiO nanoflowers exhibiting intrinsic superoxide dismutase-like activity. J. Mater. Chem. B 2016, 4, 5217–5221.
Baldim, V.; Bedioui, F.; Mignet, N.; Margaill, I.; Berret, J. F. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale 2018, 10, 6971–6980.
Singh, N.; Geethika, M.; Eswarappa, S. M.; Mugesh, G. Manganese-based nanozymes: Multienzyme redox activity and effect on the nitric oxide produced by endothelial nitric oxide synthase. Chemistry 2018, 24, 8393–8403.
Gupta, A.; Das, S.; Neal, C. J.; Seal, S. Controlling the surface chemistry of cerium oxide nanoparticles for biological applications. J. Mater. Chem. B 2016, 4, 3195–3202.
He, J.; Zhou, L.; Liu, J.; Yang, L.; Zou, L.; Xiang, J. Y.; Dong, S. W.; Yang, X. C. Modulation of surface structure and catalytic properties of cerium oxide nanoparticles by thermal and microwave synthesis techniques. Appl. Surf. Sci. 2017, 402, 469–477.
Jain, V.; Bhagat, S.; Singh, M.; Bansal, V.; Singh, S. Unveiling the effect of 11-MUA coating on biocompatibility and catalytic activity of a gold-core cerium oxide-shell-based nanozyme. RSC Adv. 2019, 9, 33195–33206.
Damle, M. A.; Jakhade, A. P.; Chikate, R. C. Modulating pro- and antioxidant activities of nanoengineered cerium dioxide nanoparticles against Escherichia coli. ACS Omega 2019, 4, 3761–3771.
Wu, J. J. X.; Wei, H. Efficient design strategies for nanozymes. Prog. Chem. 2021, 33, 42–51.
Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 2017, 1, 0052.
Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.
Neri, S.; Martin, S. G.; Pezzato, C.; Prins, L. J. Photoswitchable catalysis by a nanozyme mediated by a light-sensitive cofactor. J. Am. Chem. Soc. 2017, 139, 1794–1797.
Wang, L. W.; Gao, F.; Wang, A. Z.; Chen, X. Y.; Li, H.; Zhang, X.; Zheng, H.; Ji, R.; Li, B.; Yu, X. et al. Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Adv. Mater. 2020, 32, 2005423.
Vernekar, A. A.; Das, T.; Mugesh, G. Vacancy-engineered nanoceria: Enzyme mimetic hotspots for the degradation of nerve agents. Angew. Chem. , Int. Ed. 2016, 55, 1412–1416.
Cao, F. F.; Zhang, L.; Wang, H.; You, Y. W.; Wang, Y.; Gao, N.; Ren, J. S.; Qu, X. G. Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition. Angew. Chem. , Int. Ed. 2019, 58, 16236–16242.
Miyata, S. Anion-exchange properties of hydrotalcite-like compounds. Clays Clay. Miner. 1983, 31, 305–311.
Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–301.
Amini, R.; Asadpour-Zeynali, K. Cauliflower-like NiCo2O4-Zn/Al layered double hydroxide nanocomposite as an efficient electrochemical sensing platform for selective pyridoxine detection. Electroanalysis 2020, 32, 1160–1169.
Xu, M.; Wei, M. Layered double hydroxide-based catalysts: Recent advances in preparation, structure, and applications. Adv. Funct. Mater. 2018, 28, 1802943.
Elgendy, A.; El Basiony, N. M.; Heakal, F. E. T.; Elkholy, A. E. Mesoporous Ni-Zn-Fe layered double hydroxide as an efficient binder-free electrode active material for high-performance supercapacitors. J. Power Sources 2020, 466, 228294.
Feng, J. T.; He, Y. F.; Liu, Y. N.; Du, Y. Y.; Li, D. Q. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: General functionality and promising application prospects. Chem. Soc. Rev. 2015, 44, 5291–5319.
Gao, R.; Mei, X.; Yan, D. P.; Liang, R. Z.; Wei, M. Nano-photosensitizer based on layered double hydroxide and isophthalic acid for singlet oxygenation and photodynamic therapy. Nat. Commun. 2018, 9, 2798.
Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O'Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831.
Liu, P. F.; Yang, S.; Zhang, B.; Yang, H. G. Defect-rich ultrathin cobalt-iron layered double hydroxide for electrochemical overall water splitting. ACS Appl. Mater. Interfaces 2016, 8, 34474–34481.
Jouyban, A.; Amini, R. Layered double hydroxides as an efficient nanozyme for analytical applications. Microchem. J. 2021, 164, 105970.
Yu, J. F.; Martin, B. R.; Clearfield, A.; Luo, Z. P.; Sun, L. Y. One-step direct synthesis of layered double hydroxide single-layer nanosheets. Nanoscale 2015, 7, 9448–9451.
Liu, Z. P.; Ma, R. Z.; Ebina, Y.; Iyi, N.; Takada, K.; Sasaki, T. General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides. Langmuir 2007, 23, 861–867.
Iyi, N.; Ebina, Y.; Sasaki, T. Synthesis and characterization of water-swellable LDH (layered double hydroxide) hybrids containing sulfonate-type intercalant. J. Mater. Chem. 2011, 21, 8085–8095.
Li, X. C. Improved pyrogallol autoxidation method: A reliable and cheap superoxide-scavenging assay suitable for all antioxidants. J. Agric. Food Chem. 2012, 60, 6418–6424.
Childs, R. E.; Bardsley, W. G. The steady-state kinetics of peroxidase with 2,2’-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem. J. 1975, 145, 93–103.
Niu, H.; Yang, X.; Wang, Q.; Jing, X. Y.; Cheng, K.; Zhu, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yan, J. Electrostatic self-assembly of MXene and edge-rich CoAl layered double hydroxide on molecular-scale with superhigh volumetric performances. J. Energy Chem. 2020, 46, 105–113.
Zhao, Y. F.; Zhang, X.; Jia, X. D.; Waterhouse, G. I. N.; Shi, R.; Zhang, X. R.; Zhan, F.; Tao, Y.; Wu, L. Z.; Tung, C. H. et al. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 2018, 8, 1703585.
Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.
Bai, F.; Xu, L.; Zhai, X. Y.; Chen, X.; Yang, W. S. Vacancy in ultrathin 2D nanomaterials toward sustainable energy application. Adv. Energy Mater. 2020, 10, 1902107.
Tan, L.; Xu, S. M.; Wang, Z. L.; Xu, Y. Q.; Wang, X.; Hao, X. J.; Bai, S.; Ning, C. J.; Wang, Y.; Zhang, W. K. et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm. Angew. Chem. , Int. Ed. 2019, 58, 11860–11867.
Dong, J. L.; Song, L. N.; Yin, J. J.; He, W. W.; Wu, Y. H.; Gu, N.; Zhang, Y. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl. Mater. Interfaces 2014, 6, 1959–1970.
Wang, Y. Y.; Qiao, M.; Li, Y. F.; Wang, S. Y. Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction. Small 2018, 14, 1800136.
Li, H.; Shi, J. G.; Zhao, K.; Zhang, L. Z. Sustainable molecular oxygen activation with oxygen vacancies on the {001} facets of BiOCl nanosheets under solar light. Nanoscale 2014, 6, 14168–14173.
Pasquini, C.; Liu, S.; Chernev, P.; Gonzalez-Flores, D.; Mohammadi, M. R.; Kubella, P.; Jiang, S.; Loos, S.; Klingan, K.; Sikolenko, V. et al. Operando tracking of oxidation-state changes by coupling electrochemistry with time-resolved X-ray absorption spectroscopy demonstrated for water oxidation by a cobalt-based catalyst film. Anal. Bioanal. Chem. 2021, 413, 5395–5408.
Wang, Q.; Chen, L. F.; Guan, S. L.; Zhang, X.; Wang, B.; Cao, X. Z.; Yu, Z.; He, Y. F.; Evans, D. G.; Feng, J. T. et al. Ultrathin and vacancy-rich CoAl-layered double hydroxide/graphite oxide catalysts: Promotional effect of cobalt vacancies and oxygen vacancies in alcohol oxidation. ACS Catal. 2018, 8, 3104–3115.
Peng, X.; Zhang, X. M.; Wang, L.; Hu, L. S.; Cheng, S. H. S.; Huang, C.; Gao, B.; Ma, F.; Huo, K. F.; Chu, P. K. Hydrogenated V2O5 nanosheets for superior lithium storage properties. Adv. Funct. Mater. 2016, 26, 784–791.
Abreu, I. A.; Cabelli, D. E. Superoxide dismutases—A review of the metal-associated mechanistic variations. Biochim. Biophys. Acta 2010, 1804, 263–274.
Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.
Segel, I. H. Enzyme kinetics behavior and analysis of rapid equilibrium and steady state enzyme systems. FEBS Lett. 1975, 60, 220.
Fan, G. L.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066.
Singh, N.; NaveenKumar, S. K.; Geethika, M.; Mugesh, G. A cerium vanadate nanozyme with specific superoxide dismutase activity regulates mitochondrial function and ATP synthesis in neuronal cells. Angew. Chem. , Int. Ed. 2021, 60, 3121–3130.
Wang, Q. Q.; Chen, J. X.; Zhang, H.; Wu, W. W.; Zhang, Z. Q.; Dong, S. J. Porous Co3O4 nanoplates with pH-switchable peroxidase- and catalase-like activity. Nanoscale 2018, 10, 19140–19146.
Xie, Y. S.; Wang, Z.; Ju, M.; Long, X.; Yang, S. H. Dispersing transition metal vacancies in layered double hydroxides by ionic reductive complexation extraction for efficient water oxidation. Chem. Sci. 2019, 10, 8354–8359.
Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem. , Int. Ed. 2017, 56, 5867–5871.
Cheng, F. Y.; Zhang, T. R.; Zhang, Y.; Du, J.; Han, X. P.; Chen, J. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem. , Int. Ed. 2013, 52, 2474–2477.
Liu, Y. W.; Cheng, H.; Lyu, M. J.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.
Guo, S. B.; Han, Y.; Guo, L. Mechanistic study of catalase- and superoxide dismutation-mimic activities of cobalt oxide nanozyme from first-principles microkinetic modeling. Catal. Surv. Asia 2020, 24, 70–85.
Bielski, B. H. J.; Cabelli, D. E.; Arudi, R. L.; Ross, A. B. Reactivity of HO2/O−2 radicals in aqueous solution. J. Phys. Chem. Ref. Data 1985, 14, 1041–1100.
Wang, Z. Z.; Wu, J. J. X.; Zheng, J. J.; Shen, X. M.; Yan, L.; Wei, H.; Gao, X. F.; Zhao, Y. L. Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nat. Commun. 2021, 12, 6866.
Nicholls, D. G. Simultaneous monitoring of ionophore- and inhibitor-mediated plasma and mitochondrial membrane potential changes in cultured neurons. J. Biol. Chem. 2006, 281, 14864–14874.
Gong, N. Q.; Ma, X. W.; Ye, X. X.; Zhou, Q. F.; Chen, X. A.; Tan, X. L.; Yao, S. K.; Huo, S. D.; Zhang, T. B.; Chen, S. Z. et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat. Nanotechnol. 2019, 14, 379–387.
Xia, D. L.; Xu, P. P.; Luo, X. Y.; Zhu, J. F.; Gu, H. Y.; Huo, D.; Hu, Y. Overcoming hypoxia by multistage nanoparticle delivery system to inhibit mitochondrial respiration for photodynamic therapy. Adv. Funct. Mater. 2019, 29, 1807294.
Zhang, W.; Wang, X.; Li, P.; Xiao, H. B.; Zhang, W.; Wang, H.; Tang, B. Illuminating superoxide anion and pH enhancements in apoptosis of breast cancer cells induced by mitochondrial hyperfusion using a new two-photon fluorescence probe. Anal. Chem. 2017, 89, 6840–6845.
Ali, S. S.; Hardt, J. I.; Quick, K. L.; Kim-Han, J. S.; Erlanger, B. F.; Huang, T. T.; Epstein, C. J.; Dugan, L. L. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic. Biol. Med. 2004, 37, 1191–1202.
Dashtestani, F.; Ghourchian, H.; Najafi, A. Albumin coated copper-cysteine nanozyme for reducing oxidative stress induced during sperm cryopreservation. Bioorg. Chem. 2018, 80, 621–630.
Batinić-Haberle, I.; Liochev, S. I.; Spasojević, I.; Fridovich, I. A potent superoxide dismutase mimic: Manganese β-octabromo-meso-tetrakis-(N-methylpyridinium-4-yl) porphyrin. Arch. Biochem. Biophys. 1997, 343, 225–233.
Cuzzocrea, S.; Mazzon, E.; Dugo, L.; Caputi, A. P.; Aston, K.; Riley, D. P.; Salvemini, D. Protective effects of a new stable, highly active SOD mimetic, M40401 in splanchnic artery occlusion and reperfusion. Brit. J. Pharmacol. 2001, 132, 19–29.