AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly crystalline vinylene-linked covalent organic frameworks enhanced solid polycarbonate electrolyte for dendrite-free solid lithium metal batteries

Kaige Zhang1,2,§Chaoqun Niu2,§Chengbing Yu3( )Li Zhang1( )Yuxi Xu2( )
School of Materials and Engineering, Zhengzhou University, Zhengzhou 450001, China
School of Engineering, Westlake University, Hangzhou 310024, China
School of Materials Science and Engineering, Shanghai University, Shanghai 201800, China

§ Kaige Zhang and Chaoqun Niu contributed equally to this work.

Show Author Information

Graphical Abstract

We design novel covalent organic framework (COF)-based composite electrolyte films with chemical bond linked COFs to improve the ionic conductivity and mechanical strengths. The composite electrolyte films have an obvious effect on inhibiting the dendrites of lithium metal and the assembled full cell with LiFePO4 as the cathode exhibits superior rate capability and cycling stability.

Abstract

The development of solid-state electrolytes (SSEs) with high ionic conductivity, outstanding electrochemical window, and promising mechanical strength is a key factor in realizing the commercialization of high energy density solid-state lithium metal batteries (LMBs). Covalent organic frameworks (COFs) are a functional crystalline material with highly customizable molecular networks and one-dimensional channel structures, thus showing great potential applications in SSEs. Herein, we design flexible COF-poly(vinyl ethylene carbonate) (PVEC) (abbreviated as COF-PVEC) composite electrolyte films with excellent ionic conductivity and high mechanical strength, enabling dendrite-free and long-term running solid-state LMBs. Owing to the lithium-philic triazine and carbon–carbon double bonds groups in the COF skeleton, the obtained flexible COF-PVEC shows high ionic conductivity up to 1.11 × 10−4 S·cm−1 at 40 °C, and enlarged electrochemical window up to 4.6 V (vs. Li+/Li) compared with pure PVEC electrolyte. At the same time, the lithium dendrites are efficiently inhibited after discharge–charging cycles, due to the improved Young’s modulus (150 MPa) and ordered channels of COF. Using the various features of COF-PVEC, we assembled a solid-state full battery with LiFePO4 cathode, which showed superior rate capacity (151.8, 146.2, 139.2, 128.1, 113.7, and 100.8 mAh·g−1 at 0.1, 0.2, 0.5, 1, 1.5, and 2 C, respectively) and excellent long-term cycling stability (over 400 cycles at 1 C). We believe that the COF-based composite electrolyte can become one of the most promising high-performance SSEs for solid-state LMBs.

Electronic Supplementary Material

Download File(s)
12274_2022_4480_MOESM1_ESM.pdf (519.1 KB)

References

1

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

2

Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456.

3

Dong, T. T.; Zhang, J. J.; Xu, G. J.; Chai, J. C.; Du, H. P.; Wang, L. L.; Wen, H. J.; Zang, X.; Du, A. B.; Jia, Q. M. et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 2018, 11, 1197–1203.

4

Xia, S. X.; Zhang, X.; Luo, L. L.; Pang, Y. P.; Yang, J. H.; Huang, Y. Z.; Zheng, S. Y. Highly stable and ultrahigh-rate Li metal anode enabled by fluorinated carbon fibers. Small 2021, 17, 2006002.

5

Yu, Z.; Mackanic, D. G.; Michaels, W.; Lee, M.; Pei, A.; Feng, D. W.; Zhang, Q. H.; Tsao, Y.; Amanchukwu, C. V.; Yan, X. Z. et al. A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal anodes. Joule 2019, 3, 2761–2776.

6

Niu, C. J.; Lee, H.; Chen, S. R.; Li, Q. Y.; Du, J.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J.; Liu, J. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 2019, 4, 551–559.

7

Zhao, Q.; Liu, X. T.; Stalin, S.; Khan, K.; Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 2019, 4, 365–373.

8

Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252.

9

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

10

Lee, Y. G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D. S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy 2020, 5, 299–308.

11

Tang, W. J.; Tang, S.; Zhang, C. J.; Ma, Q. T.; Xiang, Q.; Yang, Y. W.; Luo, J. Y. Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets. Adv. Energy Mater. 2018, 8, 1800866.

12

Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P. et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction. Chem. Rev. 2016, 116, 140–162.

13

Wang, C. W.; Gong, Y. H.; Liu, B. Y.; Fu, K.; Yao, Y. G.; Hitz, E.; Li, Y. J.; Dai, J. Q.; Xu, S. M.; Luo, W. et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 2017, 17, 565–571.

14

Luo, W.; Gong, Y. H.; Zhu, Y. Z.; Li, Y. J.; Yao, Y. G.; Zhang, Y.; Fu, K.; Pastel, G.; Lin, C. F.; Mo, Y. F. et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater. 2017, 29, 1606042.

15

Chen, X. Z.; He, W. J.; Ding, L. X.; Wang, S. Q.; Wang, H. H. Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci. 2019, 12, 938–944.

16

Arya, A.; Sharma, A. L. A glimpse on all-solid-state Li-ion battery (asslib) performance based on novel solid polymer electrolytes: A topical review. J. Mater. Sci. 2020, 55, 6242–6304.

17

Xiao, Y. H.; Wang, Y.; Bo, S. H.; Kim, J. C.; Miara, L. J.; Ceder, G. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 2020, 5, 105–126.

18

Zheng, Y.; Yao, Y. Z.; Ou, J. H.; Li, M.; Luo, D.; Dou, H. Z.; Li, Z. Q.; Amine, K.; Yu, A. P.; Chen, Z. W. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures. Chem. Soc. Rev. 2020, 49, 8790–8839.

19

Liu, L. H.; Mo, J. S.; Li, J. R.; Liu, J. X.; Yan, H. J.; Lyu, J.; Jiang, B.; Chu, L. H.; Li, M. C. Comprehensively-modified polymer electrolyte membranes with multifunctional PMIA for highly-stable all-solid-state lithium-ion batteries. J. Energy Chem. 2020, 48, 334–343.

20

Polu, A. R.; Rhee, H. W.; Kim, D. K. New solid polymer electrolytes (PEO20-LiTDI-SN) for lithium batteries: Structural, thermal and ionic conductivity studies. J. Mater. Sci.: Mater. Electron. 2015, 26, 8548–8554.

21

Yang, L. Y.; Wei, D. X.; Xu, M.; Yao, Y. F.; Chen, Q. Transferring lithium ions in nanochannels: A PEO/Li+ solid polymer electrolyte design. Angew. Chem. 2014, 126, 3705–3709.

22

Nitzan, A.; Ratner, M. A. Conduction in polymers: Dynamic disorder transport. J. Phys. Chem. 1994, 98, 1765–1775.

23

Borodin, O.; Smith, G. D. Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 2006, 39, 1620–1629.

24

Cao, J.; Wang, L.; He, X. M.; Fang, M.; Gao, J.; Li, J. J.; Deng, L. F.; Chen, H.; Tian, G. Y.; Wang, J. L. et al. In situ prepared nano-crystalline TiO2-poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. J. Mater. Chem. A 2013, 1, 5955–5961.

25

Wang, Q. J.; Song, W. L.; Fan, L. Z.; Shi, Q. Effect of alumina on triethylene glycol diacetate-2-propenoic acid butyl ester composite polymer electrolytes for flexible lithium ion batteries. J. Power Sources 2015, 279, 405–412.

26

Gomez, E. D.; Panday, A.; Feng, E. H.; Chen, V.; Stone, G. M.; Minor, A. M.; Kisielowski, C.; Downing, K. H.; Borodin, O.; Smith, G. D. et al. Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett. 2009, 9, 1212–1216.

27

Zhai, H. W.; Xu, P. Y.; Ning, M. Q.; Cheng, Q.; Mandal, J.; Yang, Y. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 2017, 17, 3182–3187.

28

Wan, J. Y.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F. F.; Pei, A.; Chen, H.; Chen, W.; Chen, J. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14, 705–711.

29

Dirican, M.; Yan, C. Y.; Zhu, P.; Zhang, X. W. Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng.: R: Rep. 2019, 136, 27–46.

30

Tu, Z. Y.; Kambe, Y.; Lu, Y. Y.; Archer, L. A. Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries. Adv. Energy Mater. 2014, 4, 1300654.

31

Jung, S.; Kim, D. W.; Lee, S. D.; Cheong, M. C.; Nguyen, D. Q.; Cho, B. W.; Kim, H. S. Fillers for solid-state polymer electrolytes: Highlight. Bull. Korean Chem. Soc. 2009, 30, 2355–2361.

32

Xiong, H. M.; Wang, Z. D.; Xie, D. P.; Cheng, L.; Xia, Y. Y. Stable polymer electrolytes based on polyether-grafted ZnO nanoparticles for all-solid-state lithium batteries. J. Mate. Chem. 2006, 16, 1345–1349.

33

Chua, S.; Fang, R. P.; Sun, Z. H.; Wu, M. J.; Gu, Z.; Wang, Y. Z.; Hart, J. N.; Sharma, N.; Li, F.; Wang, D. W. Hybrid solid polymer electrolytes with two-dimensional inorganic nanofillers. Chem. -Eur. J. 2018, 24, 18180–18203.

34

He, Z. J.; Chen, L.; Zhang, B. C.; Liu, Y. C.; Fan, L. Z. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries. J. Power Sources 2018, 392, 232–238.

35

Jeong, K.; Park, S.; Jung, G. Y.; Kim, S. H.; Lee, Y. H.; Kwak, S. K.; Lee, S. Y. Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 5880–5885.

36

Huang, N.; Wang, P.; Jiang, D. L. Covalent organic frameworks: A materials platform for structural and functional designs. Nat. Rev. Mater. 2016, 1, 16068.

37

Kandambeth, S.; Biswal, B. P.; Chaudhari, H. D.; Rout, K. C.; Kunjattu, H. S.; Mitra, S.; Karak, S.; Das, A.; Mukherjee, R.; Kharul, U. K. Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 2017, 29, 1603945.

38

Ma, W. D.; Zheng, Q.; He, Y. T.; Li, G. R.; Guo, W. J.; Lin, Z.; Zhang, L. Size-controllable synthesis of uniform spherical covalent organic frameworks at room temperature for highly efficient and selective enrichment of hydrophobic peptides. J. Am. Chem. Soc. 2019, 141, 18271–18277.

39

Xu, Q.; Tao, S. S.; Jiang, Q. H.; Jiang, D. L. Designing covalent organic frameworks with a tailored ionic interface for ion transport across one-dimensional channels. Angew. Chem., Int. Ed. 2020, 59, 4557–4563.

40

Niu, C. Q.; Luo, W. J.; Dai, C. M.; Yu, C. B.; Xu, Y. X. High-voltage-tolerant covalent organic framework electrolyte with holistically oriented channels for solid-state lithium metal batteries with nickel-rich cathodes. Angew. Chem., Int. Ed. 2021, 60, 24915–24923.

41

Sun, Q.; Aguila, B.; Perman, J.; Earl, L. D.; Abney, C. W.; Cheng, Y. C.; Wei, H.; Nguyen, N.; Wojtas, L.; Ma, S. Q. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. J. Am. Chem. Soc. 2017, 139, 2786–2793.

42

Lin, Z. Y.; Guo, X. W.; Wang, Z. C.; Wang, B. Y.; He, S. M.; O'Dell, A.; Huang, J.; Li, H.; Yu, H. J.; Chen, L. Q. A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery. Nano Energy 2020, 73, 104786.

43

Xu, Q.; Tao, S. S.; Jiang, Q. H.; Jiang, D. L. Ion conduction in polyelectrolyte covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 7429–7432.

44

Zhou, B.; Jiang, J. N.; Zhang, F. F.; Zhang, H. N. Crosslinked poly(ethylene oxide)-based membrane electrolyte consisting of polyhedral oligomeric silsesquioxane nanocages for all-solid-state lithium ion batteries. J. Power Sources 2020, 449, 227541.

45

Li, X. W.; Zheng, Y. W.; Li, C. Y. Dendrite-free, wide temperature range lithium metal batteries enabled by hybrid network ionic liquids. Energy Storage Mater. 2020, 29, 273–280.

46

Wang, Y. X.; Zhang, K.; Jiang, X. Z.; Liu, Z. Y.; Bian, S. Y.; Pan, Y. Y.; Shan, Z.; Wu, M. M.; Xu, B. Q.; Zhang, G. Branched poly(ethylene glycol)-functionalized covalent organic frameworks as solid electrolytes. ACS Appl. Energy Mater. 2021, 4, 11720–11725.

47

Xia, S. X.; Yang, B. B.; Zhang, H. B.; Yang, J. H.; Liu, W.; Zheng, S. Y. Ultrathin layered double hydroxide nanosheets enabling composite polymer electrolyte for all-solid-state lithium batteries at room temperature. Adv. Funct. Mater. 2021, 31, 2101168.

Nano Research
Pages 8083-8090
Cite this article:
Zhang K, Niu C, Yu C, et al. Highly crystalline vinylene-linked covalent organic frameworks enhanced solid polycarbonate electrolyte for dendrite-free solid lithium metal batteries. Nano Research, 2022, 15(9): 8083-8090. https://doi.org/10.1007/s12274-022-4480-6
Topics:

1171

Views

28

Crossref

26

Web of Science

26

Scopus

0

CSCD

Altmetrics

Received: 05 March 2022
Revised: 20 April 2022
Accepted: 28 April 2022
Published: 18 June 2022
© Tsinghua University Press 2022
Return