AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Optical and electronic anisotropy of a 2D semiconductor SiP

Shijun Hou1,2Zhengfeng Guo3Tao Xiong1,2Xingang Wang1,2Juehan Yang1,2Yue-Yang Liu1,2Zhi-Chuan Niu1,2,5Shiyuan Liu3Bing Liu5Shenqiang Zhai4( )Honggang Gu3( )Zhongming Wei1,2,5( )
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Joint Laboratory of Advanced Semiconductor, Nanjing Guoke Semiconductor CO., Ltd., Nanjing 210008, China
Show Author Information

Graphical Abstract

SiP exhibits obvious anisotropy and excellent photoelectronic properties. This research article systematically introduces optical anisotropy, electronic anisotropy, and various photoelectronic properties of SiP.

Abstract

Two-dimensional anisotropic materials have been widely concerned by researchers because of their great application potential in the field of polarized detector devices and optical elements, which is a very important and popular research direction at present. As a IV-V two-dimensional material, silicon phosphide (SiP) has obvious in-plane anisotropy and exhibits excellent optical and electrical anisotropy properties. Herein, the optical anisotropy of SiP is studied by spectrometric ellipsometry measurements and polarization-resolved optical microscopy, and its electrical anisotropy is tested by SiP-based field-effect transistor. In addition, the normal and anisotropic photoelectric performance of SiP is shown by fabricating a photodetector and measuring it. In various measurements, SiP exhibits obvious anisotropy and good photoelectric performance. This work provides basic optical, electrical, and photoelectric performance information of SiP, and lays a foundation for further study of SiP and applications of SiP-based devices.

Electronic Supplementary Material

Download File(s)
12274_2022_4481_MOESM1_ESM.pdf (342.6 KB)

References

1

Weber, M. F.; Stover, C. A.; Gilbert, L. R.; Nevitt, T. J.; Ouderkirk, A. J. Giant birefringent optics in multilayer polymer mirrors. Science 2000, 287, 2451–2456.

2

Huang, S. X.; Tatsumi, Y.; Ling, X.; Guo, H. H.; Wang, Z. Q.; Watson, G.; Puretzky, A. A.; Geohegan, D. B.; Kong, J.; Li, J. et al. In-plane optical anisotropy of layered gallium telluride. ACS Nano 2016, 10, 8964–8972.

3

Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.

4

Nicholls, L. H.; Rodríguez-Fortuño, F. J.; Nasir, M. E.; Córdova-Castro, R. M.; Olivier, N.; Wurtz, G. A.; Zayats, A. V. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat. Photonics 2017, 11, 628–633.

5

Zhong, M. Z.; Meng, H. T.; Liu, S. J.; Yang, H.; Shen, W. F.; Hu, C. G.; Yang, J. H.; Ren, Z. H.; Li, B.; Liu, Y. et al. In-plane optical and electrical anisotropy of 2D black arsenic. ACS Nano 2021, 15, 1701–1709.

6

Bai, R. X.; Xiong, T.; Zhou, J. S.; Liu, Y. Y.; Shen, W. F.; Hu, C. G.; Yan, F. G.; Wang, K. Y.; Wei, D. H.; Li, J. B. et al. Polarization-sensitive and wide-spectrum photovoltaic detector based on quasi-1D ZrGeTe4 nanoribbon. InfoMat 2022, 4, e12258.

7

Mawlong, L. P. L. ; Ahn, J. H. 3D-structured photodetectors based on 2D transition-metal dichalcogenide. Small Struct. 2022, 3, 2100149.

8

Xin, K. Y.; Wang, X. G.; Grove-Rasmussen, K.; Wei, Z. M. Twist-angle two-dimensional superlattices and their application in (opto)electronics. J. Semicond. 2022, 43, 011001.

9

Deng, N. Q.; Tian, H.; Zhang, J.; Jian, J. M.; Wu, F.; Shen, Y.; Yang, Y.; Ren, T. L. Black phosphorus junctions and their electrical and optoelectronic applications. J. Semicond. 2021, 42, 081001.

10
Peng, L.; Liu, L. X.; Du, S. C.; Bodepudi, S. C.; Li, L. F.; Liu, W.; Lai, R. C.; Cao, X. X.; Fang, W. Z.; Liu, Y. J. et al. Macroscopic assembled graphene nanofilms based room temperature ultrafast mid-infrared photodetectors. InfoMat, in press, http://doi.org/10.1002/inf2.12309.
11

Liu, R.; Wang, F. K.; Liu, L. X.; He, X. Y.; Chen, J. Z.; Li, Y.; Zhai, T. Y. Band alignment engineering in two-dimensional transition metal dichalcogenide-based heterostructures for photodetectors. Small Struct. 2021, 2, 2000136.

12

Ding, Y.; Zheng, W.; Lin, Z. G.; Zhu, R. N.; Jin, M. G.; Zhu, Y. M.; Huang, F. Raman tensor of layered WS2. Sci. China Mater. 2020, 63, 1848–1854.

13

Wu, S. Y.; Shi, X. T.; Liu, Y.; Wang, L.; Zhang, J. D.; Zhao, W. H.; Wei, P.; Huang, W.; Huang, X.; Li, H. The influence of two-dimensional organic adlayer thickness on the ultralow frequency Raman spectra of transition metal dichalcogenide nanosheets. Sci. China Mater. 2019, 62, 181–193.

14

Zhou, Z. Q.; Long, M. S.; Pan, L. F.; Wang, X. T.; Zhong, M. Z.; Blei, M.; Wang, J. L.; Fang, J. Z.; Tongay, S.; Hu, W. D. et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs. ACS Nano 2018, 12, 12416–12423.

15

Wang, X. G.; Xiong, T.; Zhao, K.; Zhou, Z. Q.; Xin, K. Y.; Deng, H. X.; Kang, J.; Yang, J. H.; Liu, Y. Y.; Wei, Z. M. Polarimetric image sensor and fermi level shifting induced multichannel transition based on 2D PdPS. Adv. Mater. 2022, 34, 2107206.

16

Wang, X. T.; Li, Y. T.; Huang, L.; Jiang, X. W.; Jiang, L.; Dong, H. L.; Wei, Z. M.; Li, J. B.; Hu, W. P. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J. Am. Chem. Soc. 2017, 139, 14976–14982.

17

Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521.

18

Li, C. L.; Wang, S. P.; Li, C. N.; Yu, T. T.; Jia, N.; Qiao, J.; Zhu, M.; Liu, D.; Tao, X. T. Highly sensitive detection of polarized light using a new group IV-V 2D orthorhombic SiP. J. Mater. Chem. C 2018, 6, 7219–7225.

19

Zhao, S. Q.; Luo, P.; Yang, S. J.; Zhou, X.; Wang, Z. M.; Li, C. L.; Wang, S. P.; Zhai, T. Y.; Tao, X. T. Low-symmetry and nontoxic 2D SiP with strong polarization-sensitivity and fast photodetection. Adv. Opt. Mater. 2021, 9, 2100198.

20

Li, C. L.; Wang, S. P.; Zhang, X. X.; Jia, N.; Yu, T. T.; Zhu, M.; Liu, D.; Tao, X. T. Controllable seeded flux growth and optoelectronic properties of bulk o-SiP crystals. CrystEngComm 2017, 19, 6986–6991.

21

Beck, C. G.; Stickler, R. Crystallography of SiP and SiAs single crystals and of SiP precipitates in Si. J. Appl. Phys. 1966, 37, 4683–4687.

22

Barreteau, C.; Michon, B.; Besnard, C.; Giannini, E. High-pressure melt growth and transport properties of SiP, SiAs, GeP, and GeAs 2D layered semiconductors. J. Cryst. Growth 2016, 443, 75–80.

23

Momma, K.; Izumi, F. VESTA:A three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst. 2008, 41, 653–658.

24

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B Condens Matter. 1994, 50, 17953–17979.

25

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

26

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

27

Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539.

28

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

29

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

30

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

31

Yang, H.; Jussila, H.; Autere, A.; Komsa, H. P.; Ye, G. J.; Chen, X. H.; Hasan, T.; Sun, Z. P. Optical waveplates based on birefringence of anisotropic two-dimensional layered materials. ACS Photonics 2017, 4, 3023–3030.

32

Yang, Y. S.; Liu, S. C.; Wang, Y.; Long, M. S.; Dai, C. M.; Chen, S. Y.; Zhang, B.; Sun, Z.; Sun, Z. Y.; Hu, C. G. et al. In-plane optical anisotropy of low-symmetry 2D GeSe. Adv. Opt. Mater. 2019, 7, 1801311.

33

Niu, S. Y.; Joe, G.; Zhao, H.; Zhou, Y. C.; Orvis, T.; Huyan, H. X.; Salman, J.; Mahalingam, K.; Urwin, B.; Wu, J. B. et al. Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photonics 2018, 12, 392–396.

34

Song, B. K.; Gu, H. G.; Zhu, S. M.; Jiang, H.; Chen, X. G.; Zhang, C. W.; Liu, S. Y. Broadband optical properties of graphene and HOPG investigated by spectroscopic Mueller matrix ellipsometry. Appl. Surf. Sci. 2018, 439, 1079–1087.

35

Fang, M. S.; Wang, Z. Y.; Gu, H. G.; Tong, M. Y.; Song, B. K.; Xie, X. N.; Zhou, T.; Chen, X. G.; Jiang, H.; Jiang, T. et al. Layer-dependent dielectric permittivity of topological insulator Bi2Se3 thin films. Appl. Surf. Sci. 2020, 509, 144822.

36

Guo, Z. F.; Gu, H. G.; Fang, M. S.; Song, B. K.; Wang, W.; Chen, X. G.; Zhang, C. W.; Jiang, H.; Wang, L.; Liu, S. Y. Complete dielectric tensor and giant optical anisotropy in quasi-one-dimensional ZrTe5. ACS Mater. Lett. 2021, 3, 525–534.

37

Hou, S. J.; Guo, Z. F.; Yang, J. H.; Liu, Y. Y.; Shen, W. F.; Hu, C. G.; Liu, S. Y.; Gu, H. G.; Wei, Z. M. Birefringence and dichroism in quasi-1D transition metal trichalcogenides: Direct experimental investigation. Small 2021, 17, 2100457.

38

Salpeter, E. E.; Bethe, H. A. A relativistic equation for bound-state problems. Phys. Rev. 1951, 84, 1232–1242.

39

Yang, S. X.; Yang, Y. H.; Wu, M. H.; Hu, C. G.; Shen, W. F.; Gong, Y. J.; Huang, L.; Jiang, C. B.; Zhang, Y. Z.; Ajayan, P. M. Highly in-plane optical and electrical anisotropy of 2D germanium arsenide. Adv. Funct. Mater. 2018, 28, 1707379.

40

Zhong, M. Z.; Xia, Q. L.; Pan, L. F.; Liu, Y. Q.; Chen, Y. B.; Deng, H. X.; Li, J. B.; Wei, Z. M. Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: Black arsenic. Adv. Funct. Mater. 2018, 28, 1802581.

41

Yang, W.; Yang, J. H.; Zhao, K.; Gao, Q.; Liu, L. Y.; Zhou, Z. Q.; Hou, S. J.; Wang, X. T.; Shen, G. Z.; Pang, X. C. et al. Low-noise dual-band polarimetric image sensor based on 1D Bi2S3 nanowire. Adv. Sci. 2021, 8, 2100075.

Nano Research
Pages 8579-8586
Cite this article:
Hou S, Guo Z, Xiong T, et al. Optical and electronic anisotropy of a 2D semiconductor SiP. Nano Research, 2022, 15(9): 8579-8586. https://doi.org/10.1007/s12274-022-4481-5
Topics:

1023

Views

17

Crossref

14

Web of Science

15

Scopus

1

CSCD

Altmetrics

Received: 15 March 2022
Revised: 17 April 2022
Accepted: 28 April 2022
Published: 23 June 2022
© Tsinghua University Press 2022
Return