AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A chiral salen-Co(II) complex as soluble redox mediator for promoting the electrochemical performance of Li-O2batteries

Hao Wan1,§Yingjie Sun2,§Jia Yu3Qianqi Shi1Yongchun Zhu1( )Yitai Qian1( )
Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
Materials Genome Institute, Shanghai University, Shanghai 200444, China

§ Hao Wan and Yingjie Sun contributed equally to this work.

Show Author Information

Graphical Abstract

The addition of Co(II) into electrolyte for excellent performance Li-O2 batteries is confirmed. The cell with Co(II) exhibits highly discharge capacity with superior yield of Li2O2 (96.09%) and efficient catalytic for discharge products and by-products, shedding an emerging strategy to achieve large capacity low overpotential long cycle lifespan Li-O2 batteries.

Abstract

Low discharge capacity and poor cycle stability are the major obstacles hindering the operation of Li-O2 batteries with high-energy-density. These obstacles are mainly caused by the cathode passivation behaviours and the accumulation of by-products. Promoting the discharge process in solution and accelerating the decomposition of discharge products and by-products are able to alleviate above problems to some extent. Herein, chiral salen-Co(II) complex, (1R,2R)-(-)-N,N-bis(3,5-di-t-butylsalicylidene)-1,2-cyclohexanediaminocobalt(II) (Co(II)) as a multi-functional redox mediator was introduced into electrolyte to induce solution phase formation of Li2O2 and catalyze the oxidation of Li2O2 and main by-products Li2CO3. Due to the Co(II) has the solvation effect towards Li+, it can drive solution phase formation of Li2O2, to prevent electrode from passivation and then increase the discharge capacity with a high Li2O2 yield of 96.09 %. Furthermore, the Co(II) possesses suitable redox couple potentials, and it does so while simultaneously boosting the oxidization of Li2O2 and the decomposition of Li2CO3, reducing charge overpotential, and promoting cycle lifespan. Thereby, a cell with Co(II) achieved a long cycling stability at low charge plateau (3.66 V) over 252 cycles with a specific capacity of 500 mAh·gcarbon−1.

Electronic Supplementary Material

Download File(s)
12274_2022_4490_MOESM1_ESM.pdf (694.5 KB)

References

1

Luntz, A. C.; McCloskey, B. D. Nonaqueous Li-air batteries: A status report. Chem. Rev. 2014, 114, 11721–11750.

2

Lu, J.; Li, L.; Park, J. B.; Sun, Y. K.; Wu, F.; Amine, K. Aprotic and aqueous Li-O2 batteries. Chem. Rev. 2014, 114, 5611–5640.

3

Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy 2016, 1, 16128–5640.

4

Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 2012, 337, 563–566.

5

Liu, T.; Leskes, M.; Yu, W. J.; Moore, A. J.; Zhou, L. N.; Bayley, P. M.; Kim, G.; Grey, C. P. Cycling Li-O2 batteries via LiOH formation and decomposition. Science 2015, 350, 530–533.

6

Huang, Z. M.; Ren, J.; Zhang, W.; Xie, M. L.; Li, Y. K.; Sun, D.; Shen, Y.; Huang, Y. H. Protecting the Li-metal anode in a Li-O2 battery by using boric acid as an SEI-forming additive. Adv. Mater. 2018, 30, 1803270.

7

Wang, D.; Zhang, F.; He, P.; Zhou, H. S. A versatile halide ester enabling Li-anode stability and a high rate capability in lithium-oxygen batteries. Angew. Chem., Int. Ed. 2019, 58, 2355–2359.

8

Cai, Y. C.; Zhang, Q.; Lu, Y.; Hao, Z. M.; Ni, Y. X.; Chen, J. An ionic liquid electrolyte with enhanced Li+ transport ability enables stable Li deposition for high-performance Li-O2 batteries. Angew. Chem. 2021, 133, 26177–26184.

9

Zhou, Y.; Yin, K.; Gu, Q. F.; Tao, L.; Li, Y. J.; Tan, H.; Zhou, J. H.; Zhang, W. S.; Li, H. B.; Guo, S. J. Lewis-acidic PtIr multipods enable high-performance Li-O2 batteries. Angew. Chem., Int. Ed. 2021, 60, 26592–26598.

10

Wang, X. X.; Guan, D. H.; Li, F.; Li, M. L.; Zheng, L. J.; Xu, J. J. Magnetic and optical field multi-assisted Li-O2 batteries with ultrahigh energy efficiency and cycle stability. Adv. Mater. 2022, 34, 2104792.

11

Lim, H. S.; Kwak, W. J.; Chae, S.; Wi, S.; Li, L. Z.; Hu, J. T.; Tao, J. H.; Wang, C. M.; Xu W.; Zhang, J. G. Stable solid electrolyte interphase layer formed by electrochemical pretreatment of gel polymer coating on Li metal anode for lithium-oxygen batteries. ACS Energy Lett. 2021, 6, 3321–3331.

12

Aetukuri, N. B.; McCloskey, B. D.; García, J. M.; Krupp, L. E.; Viswanathan, V.; Luntz, A. C. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries. Nat. Chem. 2015, 7, 50–56.

13

Johnson, L.; Li, C. M.; Liu, Z.; Chen, Y. H.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J. M.; Bruce, P. G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat. Chem. 2014, 6, 1091–1099.

14

Gao, X. W.; Chen, Y. H.; Johnson, L.; Bruce, P. G. Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 2016, 15, 882–888.

15

Xu, J. J.; Chang, Z. W.; Wang, Y.; Liu, D. P.; Zhang, Y.; Zhang, X. B. Cathode surface-induced, solvation-mediated, micrometer-sized Li2O2 cycling for Li-O2 batteries. Adv. Mater. 2016, 28, 9620–9628.

16

Gao, X. W.; Jovanov, Z. P.; Chen, Y. H.; Johnson, L. R.; Bruce, P. G. Phenol-catalyzed discharge in the aprotic lithium-oxygen battery. Angew. Chem., Int. Ed 2017, 56, 6539–6543.

17

Zhang, Y. T.; Wang, L.; Zhang, X. Z.; Guo, L. M.; Wang, Y.; Peng, Z. Q. High-capacity and high-rate discharging of a coenzyme Q10-catalyzed Li-O2 battery. Adv. Mater. 2018, 30, 1705571.

18

Liu, Z. J.; Ma, L. P.; Guo, L. M.; Peng, Z. Q. Promoting solution discharge of Li-O2 batteries with immobilized redox mediators. J. Phys. Chem. Lett. 2018, 9, 5915–5920.

19

Yu, W.; Wang, H. W.; Hu, J.; Yang, W.; Qin, L.; Liu, R. L.; Li, B. H.; Zhai, D. Y.; Kang, F. Y. Molecular sieve induced solution growth of Li2O2 in the Li-O2 battery with largely enhanced discharge capacity. ACS Appl. Mater. Interfaces 2018, 10, 7989–7995.

20

Deng, H.; Qiao, Y.; Zhang, X. P.; Qiu, F. L.; Chang, Z.; He, P.; Zhou, H. S. Killing two birds with one stone: A Cu ion redox mediator for a non-aqueous Li-O2 battery. J. Mater. Chem. A 2019, 7, 17261–17265.

21

Shen, Z. Z.; Lang, S. Y.; Zhou, C.; Wen, R.; Wan, L. J. In situ realization of water-mediated interfacial processes at nanoscale in aprotic Li-O2 batteries. Adv. Energy Mater. 2020, 10, 2002339.

22

Li, F. J.; Chen, Y.; Tang, D. M.; Jian, Z. L.; Liu, C.; Golberg, D.; Yamada, A.; Zhou, H. S. Performance-improved Li-O2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode. Energy Environ. Sci. 2014, 7, 1648–1652.

23

Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang, L. L.; Zhang, X. B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 2013, 4, 2438.

24

Fan, W. G.; Guo, X. X.; Xiao, D. D.; Gu, L. Influence of gold nanoparticles anchored to carbon nanotubes on formation and decomposition of Li2O2 in nonaqueous Li-O2 batteries. J. Phys. Chem. C 2014, 118, 7344–7350.

25

Yang, L.; Frith, J. T.; Garcia-Araez, N.; Owen, J. R. A new method to prevent degradation of lithium-oxygen batteries: Reduction of superoxide by viologen. Chem. Commun. 2015, 51, 1705–1708.

26

Wan, H.; Sun, Y. J.; Cai, W. L.; Shi, Q. Q.; Zhu, Y. C.; Qian, Y. T. A friendly soluble protic additive enabling high discharge capability and stabilizing Li metal anodes in Li-O2 batteries. Adv. Funct. Mater. 2022, 32, 2106984.

27

Chen, C. G.; Chen, X.; Zhang, X. H.; Li, L. Y.; Zhang, C. C.; Huang, T.; Yu, A. S. A new type of cyclic silicone additive for improving the energy density and power density of Li-O2 batteries. J. Mater. Chem. A 2018, 6, 7221–7226.

28

Xiong, Q.; Huang, G.; Zhang, X. B. High-capacity and stable Li-O2 batteries enabled by a trifunctional soluble redox mediator. Angew. Chem., Int. Ed. 2020, 59, 19311–19319.

29

Wan, H.; Sun, Y. J.; Li, Z. D.; Wang, W. W.; Zhu, Y. C.; Qian, Y. T. Satisfying both sides: Novel low-cost soluble redox mediator ethoxyquin for high capacity and low overpotential Li-O2 batteries. Energy Storage Mater. 2021, 40, 159–165.

30

Bergner, B. J.; Schürmann, A.; Peppler, K.; Garsuch, A.; Janek, J. TEMPO:A mobile catalyst for rechargeable Li-O2 batteries. J. Am. Chem. Soc. 2014, 136, 15054–15064.

31

Kundu, D.; Black, R.; Adams, B.; Nazar, L. F. A highly active low voltage redox mediator for enhanced rechargeability of lithium-oxygen batteries. ACS Cent. Sci. 2015, 1, 510–515.

32

Liang, Z. J.; Lu, Y. C. Critical role of redox mediator in suppressing charging instabilities of lithium-oxygen batteries. J. Am. Chem. Soc. 2016, 138, 7574–7583.

33

Ryu, W. H.; Gittleson, F. S.; Thomsen, J. M.; Li, J. Y.; Schwab, M. J.; Brudvig, G. W.; Taylor, A. D. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries. Nat. Commun. 2016, 7, 12925.

34

Yao, K. P. C.; Frith, J. T.; Sayed, S. Y.; Bardé, F.; Owen, J. R.; Shao-Horn, Y.; Garcia-Araez, N. Utilization of cobalt bis(terpyridine) metal complex as soluble redox mediator in Li-O2 batteries. J. Phys. Chem. C 2016, 120, 16290–16297.

35

Park, J. B.; Lee, S. H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Redox mediators for Li-O2 batteries: Status and perspectives. Adv. Mater. 2018, 30, 1704162.

36

Xu, C. Y.; Xu, G. Y.; Zhang, Y. D.; Fang, S.; Nie, P.; Wu, L. Y.; Zhang, X. G. Bifunctional redox mediator supported by an anionic surfactant for long-cycle Li-O2 batteries. ACS Energy Lett. 2017, 2, 2659–2666.

37

Zhao, Q.; Katyal, N.; Seymour, I. D.; Henkelman, G.; Ma, T. Y. Vanadium(III) acetylacetonate as an efficient soluble catalyst for lithium-oxygen batteries. Angew. Chem., Int. Ed. 2019, 58, 12553–12557.

38

Bai, W. L.; Zhang, Z.; Chen, X.; Wei, X.; Zhang, Q.; Xu, Z. X.; Liu, Y. S.; Chang, B. B.; Wang, K. X.; Chen, J. S. Boosting the electrochemical performance of Li-O2 batteries with DPPH redox mediator and graphene-luteolin-protected lithium anode. Energy Storage Mater. 2020, 31, 373–381.

39

Hu, X. F.; Wang, J. B.; Li, Z. F.; Wang, J. Q.; Gregory, D. H.; Chen, J. MCNTs@MnO2 nanocomposite cathode integrated with soluble O2-carrier Co-salen in electrolyte for high-performance Li-air batteries. Nano Lett. 2017, 17, 2073–2078.

40

Lim, H. K.; Lim, H. D.; Park, K. Y.; Seo, D. H.; Gwon, H.; Hong, J.; Goddard, W. A., III; Kim, H.; Kang, K. Toward a lithium-“air” battery: The effect of CO2 on the chemistry of a lithium-oxygen cell. J. Am. Chem. Soc. 2013, 135, 9733–9742.

41

Meini, S.; Tsiouvaras, N.; Schwenke, K. U.; Piana, M.; Beyer, H.; Lange, L.; Gasteiger, H. A. Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: Implications for cycle-life of Li-air cells. Phys. Chem. Chem. Phys. 2013, 15, 11478–11493.

42

Ling, C.; Zhang, R. G.; Takechi, K.; Mizuno, F. Intrinsic barrier to electrochemically decompose Li2CO3 and LiOH. J. Phys. Chem. C 2014, 118, 26591–26598.

43

Zhao, Z. W.; Huang, J.; Peng, Z. Q. Achilles’ heel of lithium-air batteries: Lithium carbonate. Angew. Chem., Int. Ed. 2018, 57, 3874–3886.

44

McCloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D. C.; Viswanathan, V.; Hummelshøj, J. S.; Nørskov, J. K.; Luntz, A. C. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 2012, 3, 997–1001.

45

Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z. Q.; Bruce, P. G. The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 2013, 135, 494–500.

46

Lim, H. D.; Lee, B.; Zheng, Y. P.; Hong, J.; Kim, J.; Gwon, H.; Ko, Y.; Lee, M.; Cho, K.; Kang, K. Rational design of redox mediators for advanced Li-O2 batteries. Nat. Energy 2016, 1, 16066.

47

Kwak, W. J.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Optimized bicompartment two solution cells for effective and stable operation of Li-O2 batteries. Adv. Energy Mater. 2017, 7, 1701232.

48

Lim, H. D.; Song, H.; Kim, J.; Gwon, H.; Bae, Y.; Park, K. Y.; Hong, J.; Kim, H.; Kim, T.; Kim, Y. H. et al. Superior rechargeability and efficiency of lithium-oxygen batteries: Hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem., Int. Ed. 2014, 53, 3926–3931.

49

Sun, D.; Shen, Y.; Zhang, W.; Yu, L.; Yi, Z. Q.; Yin, W.; Wang, D.; Huang, Y. H.; Wang, J.; Wang, D. et al. A solution-phase bifunctional catalyst for lithium-oxygen batteries. J. Am. Chem. Soc. 2014, 136, 8941–8946.

50

Wang, R.; Yu, X. Q.; Bai, J. M.; Li, H.; Huang, X. J.; Chen, L. Q.; Yang, X. Q. Electrochemical decomposition of Li2CO3 in NiO-Li2CO3 nanocomposite thin film and powder electrodes. J. Power Sources 2012, 218, 113–118.

51

Fan, L. J.; Tang, D. C.; Wang, D. Y.; Wang, Z. X.; Chen, L. Q. LiCoO2-catalyzed electrochemical oxidation of Li2CO3. Nano Res. 2016, 9, 3903–3913.

52

Sellers, R. M. Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate. Analyst 1980, 105, 950–954.

53
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.
54

Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100.

55

Bieker, G.; Wellmann, J.; Kolek, M.; Jalkanen, K.; Winter, M.; Bieker, P. Influence of cations in lithium and magnesium polysulphide solutions: Dependence of the solvent chemistry. Phys. Chem. Chem. Phys. 2017, 19, 11152–11162.

56

Liu, Z. X.; Zhang, Y. T.; Jia, C. K.; Wan, H.; Peng, Z.; Bi, Y. J.; Liu, Y.; Peng, Z. Q.; Wang, Q.; Li, H. et al. Decomposing lithium carbonate with a mobile catalyst. Nano Energy 2017, 36, 390–397.

57

Yang, H. J.; Qiao, Y.; Chang, Z.; Deng, H.; He, P.; Zhou, H. S. A safe and sustainable lithium-ion-oxygen battery based on a low-cost dual-carbon electrodes architecture. Adv. Mater. 2021, 33, 2100827.

58

Guo, X.; Zhang, J. Q.; Zhao, Y. F.; Sun, B.; Liu, H.; Wang, G. X. Ultrathin porous NiCo2O4 nanosheets for lithium-oxygen batteries: An excellent performance deriving from an enhanced solution mechanism. ACS Appl. Energy Mater. 2019, 2, 4215–4223.

59

Zhang, J. Q.; Sun, B.; Zhao, Y. F.; Tkacheva, A.; Liu, Z. J.; Yan, K.; Guo, X.; McDonagh, A. M.; Shanmukaraj, D.; Wang, C. Y. et al. A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries. Nat. Commun. 2019, 10, 602.

60

Zhang, X. M.; Guo, L. M.; Gan, L. F.; Zhang, Y. T.; Wang, J.; Johnson, L. R.; Bruce, P. G.; Peng, Z. Q. LiO2: Cryosynthesis and chemical/electrochemical reactivities. J. Phys. Chem. Lett. 2017, 8, 2334–2338.

Nano Research
Pages 8101-8108
Cite this article:
Wan H, Sun Y, Yu J, et al. A chiral salen-Co(II) complex as soluble redox mediator for promoting the electrochemical performance of Li-O2batteries. Nano Research, 2022, 15(9): 8101-8108. https://doi.org/10.1007/s12274-022-4490-4
Topics:

959

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 14 March 2022
Revised: 30 April 2022
Accepted: 02 May 2022
Published: 22 June 2022
© Tsinghua University Press 2022
Return