Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Tailoring interlayer spacing in MXene cathodes to boost the desalination performance of hybrid capacitive deionization systems

Bei Li1,§Kang Sun2,§Wenyu Xu3Xiaojing Liu1Ao Wang2Steven Boles4Bin Xu5Haibo Hu3()Dongrui Yao1()
Jiangsu Engineering Research Center of Aquatic Plant Resources and Water Environment Remediation, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
School of Materials Science and Engineering, Anhui University, Hefei 230601, China
Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway
Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China

§ Bei Li and Kang Sun contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
The interlayer spacing of MXene-based electrodes can be precisely modulated by inserting different quantity of bacterial nanofibers, thus boosting the desalination performance of the composite electrode.

Abstract

Capacitive deionization (CDI) is a promising technology to satisfy the global need for fresh water, since it can be both economical and sustainable. While two-dimensional transition metal carbides/nitrides (MXenes) exhibit great characteristics for use as CDI electrode materials, their tightly spaced layered structure renders intercalation inefficiency. In this study, the interlayer distance of MXenes is precisely modulated by inserting different quantity of one-dimensional bacterial fibers (BC), forming freestanding MXene/BC composite electrodes. Among the studied samples, MXene/BC-33% electrode with the interlayer spacing of 15.2 Å can achieve an optimized tradeoff among various desalination performance metrics and indicators. The salt adsorption capacity (SAC), the average salt adsorption rate (ASAR), the energy normalized adsorbed salt (ENAS), and the thermodynamic energy efficiency (TEE) of the MXene/BC-33% electrode are improved by 24%, 46%, 13%, and 66% respectively compared with those of pure MXene electrode. While the insertion of BC improves the ion diffusion pathways and facilitates the intercalation kinetics, the desalination performance decreases when the insertion amount of BC exceeds 40%. This is attributed to the overlarge resistance of the composite and the resulting increased energy consumption. This study reveals the desalination performance tradeoffs of MXene-based electrodes with different interlayer distances and also sheds light on the fundamental ion storage mechanisms of intercalation materials in a CDI desalination system.

Electronic Supplementary Material

Download File(s)
12274_2022_4491_MOESM1_ESM.pdf (349.2 KB)

References

[1]

Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P. M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 2013, 58, 1388–1442.

[2]

Amiri, A.; Chen, Y. J.; Bee Teng, C.; Naraghi, M. Porous nitrogen-doped MXene-based electrodes for capacitive deionization. Energy Storage Mater. 2020, 25, 731–739.

[3]

Bales, C.; Kovalsky, P.; Fletcher, J.; Waite, T. D. Low cost desalination of brackish groundwaters by capacitive deionization (CDI)-implications for irrigated agriculture. Desalination 2019, 453, 37–53.

[4]

Anwer, S.; Anjum, D. H.; Luo, S. H.; Abbas, Y.; Li, B. S.; Iqbal, S.; Liao, K. 2D Ti3C2Tx MXene nanosheets coated cellulose fibers based 3D nanostructures for efficient water desalination. Chem Eng J. 2021, 406, 126827.

[5]

Lee, J.; Kim, S.; Kim, C.; Yoon, J. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ. Sci. 2014, 7, 3683–3689.

[6]

Kong, W. Q.; Duan, X. D.; Ge, Y. J.; Liu, H. T.; Hu, J. W.; Duan, X. F. Holey graphene hydrogel with in-plane pores for high-performance capacitive desalination. Nano Res. 2016, 9, 2458–2466.

[7]

Li, B.; Zheng, T. Y.; Ran, S. J.; Sun, M. Z.; Shang, J.; Hu, H. B.; Lee, P. H.; Boles, S. T. Performance recovery in degraded carbon-based electrodes for capacitive deionization. Environ. Sci. Technol. 2019, 54, 1848–1856.

[8]

Ihsanullah, I.; Ali, H. Technological challenges in the environmental applications of MXenes and future outlook. Case Stud. Chem. Environ. Eng. 2020, 2, 100034.

[9]

Ihsanullah, I. Potential of MXenes in water desalination: Current status and perspectives. Nanomicro Lett. 2020, 12, 72.

[10]

Suss, M. E.; Porada, S.; Sun, X.; Biesheuvel, P. M.; Yoon, J.; Presser, V. Water desalination via capacitive deionization: What is it and what can we expect from it? Energy Environ. Sci. 2015, 8, 2296–2319.

[11]

Biesheuvel, P. M.; Hamelers, H. V. M.; Suss, M. E. Theory of water desalination by porous electrodes with immobile chemical charge. Colloids Interface Sci. Commun. 2015, 9, 1–5.

[12]

Cohen, I.; Avraham, E.; Bouhadana, Y.; Soffer, A.; Aurbach, D. Long term stability of capacitive de-ionization processes for water desalination: The challenge of positive electrodes corrosion. Electrochim. Acta 2013, 106, 91–100.

[13]

Chen, F. M.; Huang, Y. X.; Guo, L.; Ding, M.; Yang, H. Y. A dual-ion electrochemistry deionization system based on AgCl-Na044MnO2 electrodes. Nanoscale 2017, 9, 10101–10108.

[14]

Liang, M. X.; Bai, X. T.; Yu, F.; Ma, J. A confinement strategy to in-situ prepare a peanut-like N-doped, C-wrapped TiO2 electrode with an enhanced desalination capacity and rate for capacitive deionization. Nano Res. 2021, 14, 684–691.

[15]

Holubowitch, N.; Omosebi, A.; Gao, X.; Landon, J.; Liu, K. L. Quasi-steady-state polarization reveals the interplay of capacitive and faradaic processes in capacitive deionization. ChemElectroChem 2017, 4, 2404–2413.

[16]

Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Monolithic carbide-derived carbon films for micro-supercapacitors. Science 2010, 328, 480–483.

[17]
Cao, Z. Q. ; Hu, H. B. ; Ho, D. Micro-redoxcapacitor: A hybrid architecture out of the notorious energy-power density dilemma. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202111805.
[18]

Hantanasirisakul, K.; Gogotsi, Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 2018, 30, 1804779.

[19]

Suss, M. E.; Presser, V. Water desalination with energy storage electrode materials. Joule 2018, 2, 10–15.

[20]

Agartan, L.; Hantanasirisakul, K.; Buczek, S.; Akuzum, B.; Mahmoud, K. A.; Anasori, B.; Gogotsi, Y.; Kumbur, E. C. Influence of operating conditions on the desalination performance of a symmetric pre-conditioned Ti3C2Tx-MXene membrane capacitive deionization system. Desalination 2020, 477, 114267.

[21]

Srimuk, P.; Kaasik, F.; Krüner, B.; Tolosa, A.; Fleischmann, S.; Jäckel, N.; Tekeli, M. C.; Aslan, M.; Suss, M. E.; Presser, V. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. J. Mater. Chem. A 2016, 4, 18265–18271.

[22]

Torkamanzadeh, M.; Wang, L.; Zhang, Y.; Budak, Ö.; Srimuk, P.; Presser, V. MXene/activated-carbon hybrid capacitive deionization for permselective ion removal at low and high salinity. ACS Appl. Mater. Interfaces 2020, 12, 26013–26025.

[23]

Buczek, S.; Barsoum, M. L.; Uzun, S.; Kurra, N.; Andris, R.; Pomerantseva, E.; Mahmoud, K. A.; Gogotsi, Y. Rational design of titanium carbide MXene electrode architectures for hybrid capacitive deionization. Energy Environ. Mater. 2020, 3, 398–404.

[24]

Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

[25]

Shen, X. J.; Xiong, Y. C.; Hai, R. T.; Yu, F.; Ma, J. All-MXene-based integrated membrane electrode constructed using Ti3C2Tx as an intercalating agent for high-performance desalination. Environ. Sci. Technol. 2020, 54, 4554–4563.

[26]

Feng, A. H.; Yu, Y.; Mi, L.; Yu, Y.; Song, L. X. Comparative study on electrosorptive behavior of NH4HF2-etched Ti3C2 and HF-etched Ti3C2 for capacitive deionization. Ionics 2019, 25, 727–735.

[27]

Elisadiki, J.; King'ondu, C. K. Performance of ion intercalation materials in capacitive deionization/electrochemical deionization: A review. J. Electroanal. Chem. 2020, 878, 114588.

[28]

Chen, B. B.; Feng, A. H.; Deng, R. X.; Liu, K.; Yu, Y.; Song, L. X. MXene as a cation-selective cathode material for asymmetric capacitive deionization. ACS Appl. Mater. Interfaces 2020, 12, 13750–13758.

[29]

Guo, L.; Wang, X. F.; Leong, Z. Y.; Mo, R. W.; Sun, L. F.; Yang, H. Y. Ar plasma modification of 2D MXene Ti3C2Tx nanosheets for efficient capacitive desalination. FlatChem 2018, 8, 17–24.

[30]

Ma, J.; Cheng, Y. J.; Wang, L.; Dai, X. H.; Yu, F. Free-standing Ti3C2TxMXene film as binder-free electrode in capacitive deionization with an ultrahigh desalination capacity. Chem. Eng. J. 2020, 384, 123329.

[31]

Zheng, T. Y.; Tahmasebi, M. H.; Li, B.; Li, Y.; Ran, S. J.; Glen, T. S.; Lam, K. H.; Choi, I. S.; Boles, S. T. Sputtered titanium nitride films on titanium foam substrates as electrodes for high-power electrochemical capacitors. ChemElectroChem 2018, 5, 2199–2207.

[32]

Zhang, C. Y.; He, D.; Ma, J. X.; Tang, W. W.; Waite, T. D. Comparison of faradaic reactions in flow-through and flow-by capacitive deionization (CDI) systems. Electrochim. Acta 2019, 299, 727–735.

[33]

Hawks, S. A.; Ramachandran, A.; Porada, S.; Campbell, P. G.; Suss, M. E.; Biesheuvel, P. M.; Santiago, J. G.; Stadermann, M. Performance metrics for the objective assessment of capacitive deionization systems. Water Res. 2019, 152, 126–137.

[34]

Wang, L.; Dykstra, J. E.; Lin, S. H. Energy efficiency of capacitive deionization. Environ. Sci. Technol. 2019, 53, 3366–3378.

[35]

Jiao, S. Q.; Zhou, A. G.; Wu, M. Z.; Hu, H. B. Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays. Adv. Sci. 2019, 6, 1900529.

[36]

Zheng, S. H.; Zhang, C. F.; Zhou, F.; Dong, Y. F.; Shi, X. Y.; Nicolosi, V.; Wu, Z. S.; Bao, X. H. Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density. J. Mater. Chem. A 2019, 7, 9478–9485.

[37]

Dai, Y.; Wu, X. Y.; Liu, Z. S.; Zhang, H. B.; Yu, Z. Z. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B Eng. 2020, 200, 108263.

[38]

Ling, Z.; Harvey, A.; McAteer, D.; Godwin, I. J.; Szydłowska, B.; Griffin, A.; Vega-Mayoral, V.; Song, Y. C.; Seral-Ascaso, A.; Nicolosi, V. et al. Quantifying the role of nanotubes in nano: Nano composite supercapacitor electrodes. Adv. Energy Mater. 2018, 8, 1702364.

[39]
Khazaei, M.; Ranjbar, A.; Liang, Y.; Yunoki, S. Electronic properties and applications of MXenes from Ab Initio calculations perspective. In 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications. Anasori, B.; Gogotsi, Y., Eds.; Springer: Cham, 2019; pp 255–289.
[40]

Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417.

[41]

Wang, S. Y.; Li, Z. L.; Wang, G.; Wang, Y. W.; Ling, Z.; Li, C. P. Freestanding Ti3C2Tx MXene/prussian blue analogues films with superior ion uptake for efficient capacitive deionization by a dual pseudocapacitance effect. ACS Nano 2022, 16, 1239–1249.

[42]

Ghidiu, M.; Halim, J.; Kota, S.; Bish, D.; Gogotsi, Y.; Barsoum, M. W. Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater. 2016, 28, 3507–3514.

[43]

Lukatskaya, M. R.; Bak, S. M.; Yu, X. Q.; Yang, X. Q.; Barsoum, M. W.; Gogotsi, Y. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 2015, 5, 1500589.

[44]

Xu, L. Q.; Mao, Y. F.; Zong, Y.; Peng, S.; Zhang, X. M.; Wu, D. L. Membrane-current collector-based flow-electrode capacitive deionization system: A novel stack configuration for scale-up desalination. Environ. Sci. Technol. 2021, 55, 13286–13296.

[45]

Zhao, R.; Biesheuvel, P. M.; van der Wal, A. Energy consumption and constant current operation in membrane capacitive deionization. Energy Environ. Sci. 2012, 5, 9520–9527.

[46]

Porada, S.; Weinstein, L.; Dash, R.; van der Wal, A.; Bryjak, M.; Gogotsi, Y.; Biesheuvel, P. M. Water desalination using capacitive deionization with microporous carbon electrodes. ACS Appl. Mater. Interfaces 2012, 4, 1194–1199.

Nano Research
Pages 6039-6047
Cite this article:
Li B, Sun K, Xu W, et al. Tailoring interlayer spacing in MXene cathodes to boost the desalination performance of hybrid capacitive deionization systems. Nano Research, 2023, 16(5): 6039-6047. https://doi.org/10.1007/s12274-022-4491-3
Topics:
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return