AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Low-coordinated surface sites make truncated Pd tetrahedrons as robust ORR electrocatalysts outperforming Pt for DMFC devices

Xiaoling Wang1Jingwei Li4Xiaotong Yang1Fengling Zhao1Yongfei Li2Daliang Zhang4Li-Yong Gan2,5( )Ke Xin Yao2,4( )Qiang Yuan1,3( )
State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
Key Lab of Organic Optoelectronics & Molecular Engineering, Tsinghua University, Beijing 100084, China
Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
Show Author Information

Graphical Abstract

Truncated Pd tetrahedrons (T-Pd-Ths) rich in low-coordinated surface sites and lattice distortions with a size of around 13.4 nm have been successfully synthesized. The T-Pd-Ths/C as highly active and stable oxygen reduction reaction (ORR) electrocatalyst exhibits superior power output to commercial Pt/C from 25 to 80 °C.

Abstract

Developing highly stable and active non-Pt oxygen reduction reaction (ORR) electrocatalysts for power generation device raises great concerns and remains a challenge. Here, we report novel truncated Pd tetrahedrons (T-Pd-Ths) enclosed by {111} facets with excellent uniformity, which have both low-coordinated surface sites and distinct lattice distortions that would induce “local strain”. In alkaline electrolyte, the T-Pd-Ths/C achieves remarkable ORR specific/mass activity (SA/MA) of 2.46 mA·cm−2/1.69 A·mgPd−1, which is 12.3/16.9 and 10.7/14.1 times higher than commercial Pd/C and Pt/C, respectively. The T-Pd-Ths/C also exhibits high in-situ carbon monoxide (CO) tolerance and 50,000 cycles durability with an activity loss of 7.69% and morphological stability. The rotating ring-disk electrode (RRDE) measurements show that a 4-electron process occurs on T-Pd-Ths/C. Theoretical calculations demonstrate that the low-coordinated surface sites contribute largely to the enhancement of ORR activity. In actual direct methanol fuel cell (DMFC) device, the T-Pd-Ths/C delivers superior open-circuit voltage (OCV) and peak power density (PPD) to commercial Pt/C from 25 to 80 °C, and the maximum PPD can reach up to 163.7 mW·cm−2. This study demonstrates that the T-Pd-Ths/C holds promise as alternatives to Pt for ORR in DMFC device.

Electronic Supplementary Material

Download File(s)
12274_2022_4492_MOESM1_ESM.pdf (2.5 MB)

References

1

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

2

Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.

3

Chandrasekaran, S.; Ma, D. T.; Ge, Y. Q.; Deng, L. B.; Bowen, C.; Roscow, J.; Zhang, Y.; Lin, Z. Q.; Misra, R. D. K.; Li, J. Q. et al. Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Nano Energy 2020, 77, 105080.

4

Liu, Z. Y.; Zhao, Z. P.; Peng, B. S.; Duan, X. F.; Huang, Y. Beyond extended surfaces: Understanding the oxygen reduction reaction on nanocatalysts. J. Am. Chem. Soc. 2020, 142, 17812–17827.

5
Dong, J. C. ; Zhang, X. G. ; Briega-Martos, V. ; Jin, X. ; Yang, J. ; Chen, S. ; Yang, Z. L. ; Wu, D. Y. ; Feliu , J. M. ; Williams, C. T. et al.In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 2019, 4, 60–67.https://doi.org/10.1038/s41560-018-0292-z
6

Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 2650–2676.

7

Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Recent progress of ultrathin 2D Pd-based nanomaterials for fuel cell electrocatalysis. Small 2021, 17, 2005092.

8

Chan, Y. T.; Siddharth, K.; Shao, M. H. Investigation of cubic Pt alloys for ammonia oxidation reaction. Nano Res. 2020, 13, 1920–1927.

9

Wang, X. Q.; Li, Z. J.; Qu, Y. T.; Yuan, T. W.; Wang, W. Y.; Wu, Y. E.; Li, Y. D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design. Chem 2019, 5, 1486–1511.

10

Shi, S.; Wen, X. L.; Sang, Q. Q.; Yin, S.; Wang, K. L.; Zhang, J.; Hu, M.; Yin, H. M.; He, J.; Ding, Y. Ultrathin nanoporous metal electrodes facilitate high proton conduction for low-Pt PEMFCs. Nano Res. 2021, 14, 2681–2688.

11

Yang, Y.; Xiao, W. P.; Feng, X. R.; Xiong, Y.; Gong, M. X.; Shen, T.; Lu, Y.; Abruña, H. D.; Wang, D. L. Golden palladium zinc ordered intermetallics as oxygen reduction electrocatalysts. ACS Nano 2019, 13, 5968–5974.

12

Lei, W. J.; Li, M. G.; He, L.; Meng, X.; Mu, Z. J.; Yu, Y. S.; Ross, F. M.; Yang, W. W. A general strategy for bimetallic Pt-based nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts. Nano Res. 2020, 13, 638–645.

13

Jiang, G. M.; Zhu, H. Y.; Zhang, X.; Shen, B.; Wu, L. H.; Zhang, S.; Lu, G.; Wu, Z. B.; Sun, S. H. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction. ACS Nano 2015, 9, 11014–11022.

14

Nosheen, F.; Wasfi, N.; Aslam, S.; Anwar, T.; Hussain, S.; Hussain, N.; Shah, S. N.; Shaheen, N.; Ashraf, A.; Zhu, Y. T. et al. Ultrathin Pd-based nanosheets: Syntheses, properties and applications. Nanoscale 2020, 12, 4219–4237.

15

Lai, J. P.; Huang, B. L.; Tang, Y. H.; Lin, F.; Zhou, P.; Chen, X.; Sun, Y. J.; Lv, F.; Guo, S. J. Barrier-free interface electron transfer on PtFe-Fe2C Janus-like nanoparticles boosts oxygen catalysis. Chem 2018, 4, 1153–1166.

16

Che, Z. W.; Lu, X. Y.; Cai, B. F.; Xu, X. X.; Bao, J. C.; Liu, Y. Ligand-controlled synthesis of high density and ultra-small Ru nanoparticles with excellent electrocatalytic hydrogen evolution performance. Nano Res. 2022, 15, 1269–1275.

17

Tian, X, L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

18

Chaudhari, N. K.; Hong, Y. J.; Kim, B.; Choi, S. I.; Lee. K. Pt-Cu based nanocrystals as promising catalysts for various electrocatalytic reactions. J. Mater. Chem. A 2019, 7, 17183–17203.

19

Hu, Q. Y.; Zhan, W.; Guo, Y. F.; Luo, L. M.; Zhang, R. H.; Chen, D.; Zhou, X. W. Heat treatment bimetallic PdAu nanocatalyst for oxygen reduction reaction. J. Energy Chem. 2020, 40, 217–223.

20

Xu, G. R.; Han, C. C.; Zhu, Y. Y.; Zeng, J. H.; Jiang, J. X.; Chen, Y. PdCo alloy nanonetworks-polyallylamine inorganic–organic nanohybrids toward the oxygen reduction reaction. Adv. Mater. Interfaces 2018, 5, 1701322.

21

Bu, L. Z.; Shao, Q.; Pi, Y. C.; Yao, J. L.; Luo, M. C.; Lang, J. P.; Hwang, S.; Xin, H. L.; Huang, B. L.; Guo, J. et al. Coupled s-p-d exchange in facet-controlled Pd3Pb tripods enhances oxygen reduction catalysis. Chem 2018, 4, 359–371.

22

Jiang, X.; Xiong, Y. X.; Zhao, R. P.; Zhou, J. C.; Lee, J. M.; Tang, Y. W. Trimetallic Au@PdPb nanowires for oxygen reduction reaction. Nano Res. 2020, 13, 2691–2696.

23

Chen, S. P.; Li, M. F.; Gao, M. Y.; Jin, J. B.; van Spronsen, M. A.; Salmeron, M. B.; Yang, P. D. High-performance Pt-Co nanoframes for fuel-cell electrocatalysis. Nano Lett. 2020, 20, 1974–1979.

24

Yang, F.; Ye, J. Y.; Yuan, Q.; Yang, X. T.; Xie, Z. X.; Zhao, F. L.; Zhou, Z. Y.; Gu, L.; Wang, X. Ultrasmall Pd-Cu-Pt trimetallic twin icosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells. Adv. Funct. Mater. 2020, 30, 1908235.

25

Niu, Z. Q.; Peng, Q.; Gong, M.; Rong, H. P.; Li, Y. D. Oleylamine-mediated shape evolution of palladium nanocrystals. Angew. Chem., Int. Ed. 2011, 50, 6315–6319.

26

Zhang, H. F.; Qiu, X. Y.; Chen, Y. F.; Wang, S. Z.; Skrabalak, S. E.; Tang, Y. W. Shape control of monodispersed sub-5 nm Pd tetrahedrons and laciniate Pd nanourchins by maneuvering the dispersed state of additives for boosting ORR performance. Small 2020, 16, 1906026.

27

Setvín, M.; Wagner, M.; Schmid, M.; Parkinson, G. S.; Diebold, U. Surface point defects on bulk oxides: Atomically-resolved scanning probe microscopy. Chem. Soc. Rev. 2017, 46, 1772–1784.

28

Wang, X.; Choi, S. I.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M. F.; Liu, J. Y.; Xie, Z. X.; Herron, J. A. et al. Palladium-platinum core–shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 2015, 6, 7594.

29

Xu, G. R.; Wang, B.; Zhu, J. Y.; Liu, F. Y.; Chen, Y.; Zeng, J. H.; Jiang, J. X.; Liu, Z. H.; Tang, Y. W.; Lee, J. M. Morphological and interfacial control of platinum nanostructures for electrocatalytic oxygen reduction. ACS Catal. 2016, 6, 5260–5267.

30

Li, Y. L.; He, J. F.; Cheng, W. R.; Su, H.; Li, C. L.; Zhang, H.; Liu, M. H.; Zhou, W. L.; Chen, X.; Liu, Q. H. High mass-specific reactivity of a defect-enriched Ru electrocatalyst for hydrogen evolution in harsh alkaline and acidic media. Sci. China Mater. 2021, 64, 2467–2476.

31

Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

32

Tian, N.; Zhou, Z. Y.; Yu, N. F.; Wang, L. Y.; Sun, S. G. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. J. Am. Chem. Soc. 2010, 132, 7580–7581.

33

Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

34

Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

35

Zhu, W. X.; Yuan, H.; Liao, F.; Shen, Y. W.; Shi, H. X.; Shi, Y. D.; Xu, L.; Ma, M. J.; Shao, M. W. Strain engineering for Janus palladium-gold bimetallic nanoparticles: Enhanced electrocatalytic performance for oxygen reduction reaction and zinc-air battery. Chem. Eng. J. 2020, 389, 124240.

36

Zhang, Y.; Huang, B. L.; Luo, G.; Sun, T.; Feng, Y. G.; Wang, Y. C.; Ma, Y. H.; Shao, Q.; Li, Y. F.; Zhou, Z. Y. et al. Atomically deviated Pd-Te nanoplates boost methanol-tolerant fuel cells. Sci. Adv. 2020, 6, eaba9731.

37

Zhao, F. L.; Zheng, L. R.; Yuan, Q.; Yang, X. T.; Zhang, Q. H.; Xu, H.; Guo, Y. L.; Yang, S.; Zhou, Z. Y.; Gu, L. et al. Ultrathin PdAuBiTe nanosheets as high-performance oxygen reduction catalysts for a direct methanol fuel cell device. Adv. Mater. 2021, 33, 2103383.

38

Yu, H. J.; Zhou, T. Q.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Defect-rich porous palladium metallene for enhanced alkaline oxygen reduction electrocatalysis. Angew. Chem. , Int. Ed. 2021, 60, 12027–12031.

39

Zuo, Y. P.; Rao, D. W.; Li, S.; Li, T. T.; Zhu, G. L.; Chen, S. M.; Song, L.; Chai, Y.; Han, H. Y. Atomic vacancies control of Pd-based catalysts for enhanced electrochemical performance. Adv. Mater. 2018, 30, 1704171.

40

Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 2018, 9, 3702.

41

Li, X.; Li, X. X.; Liu, C. X.; Huang, H. W.; Gao, P. F.; Ahmad, F.; Luo, L. H.; Ye, Y. F.; Geng, Z. G.; Wang, G. X. et al. Atomic-level construction of tensile-strained PdFe alloy surface toward highly efficient oxygen reduction electrocatalysis. Nano Lett. 2020, 20, 1403–1409.

42

Feng, Y.; Liu, H.; Yang, J. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol. Sci. Adv. 2017, 3, e1700580.

43

Sun, Y. J.; Huang, B. L.; Xu, N. Y.; Li, Y. J.; Luo, M. C.; Li, C. J.; Qin, Y. N.; Wang, L.; Guo, S. J. Rh-doped PdAg nanoparticles as efficient methanol tolerance electrocatalytic materials for oxygen reduction. Sci. Bull. 2019, 64, 54–62.

44

Xiong, W.; Mehrabadi, B. A. T.; Karakolos, S. G.; White, R. D.; Shakouri, V.; Kasak, P.; Zaidi, S. J.; Weidner, J. W.; Regalbuto, J. R.; Colon-Mercado, H. et al. Enhanced performance of oxygen-functionalized multiwalled carbon nanotubes as support for Pt and Pt-Ru bimetallic catalysts for methanol electrooxidation. ACS Appl. Energy Mater. 2020, 3, 5487–5496.

45

Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.

46

Mahsud, A.; Chen, J. N.; Yuan, X. L.; Lyu, F.; Zhong, Q. X.; Chen, J. X.; Yin, Y. D.; Zhang, Q. Self-templated formation of cobalt-embedded hollow N-doped carbon spheres for efficient oxygen reduction. Nano Res. 2021, 14, 2819–2825.

47
Moulder, J. F. ; Stickle, W. F. ; Sobol, P. E. ; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics Inc. : Chanhassen, 1995.
48

Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L.; Zheng, N. F.; Fu, G. Carbon monoxide-assisted synthesis of single-crystalline Pd tetrapod nanocrystals through hydride formation. J. Am. Chem. Soc. 2012, 134, 7073–7080.

49

Zhang, Y.; Zhu, X.; Guo, J.; Huang, X. Q. Controlling palladium nanocrystals by solvent-induced strategy for efficient multiple liquid fuels electrooxidation. ACS Appl. Mater. Interfaces 2016, 8, 20642–20649.

50

Wu, J. B.; Zhang, J. L.; Peng, Z. M.; Yang, S. C.; Wagner, F. T.; Yang, H. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 2010, 132, 4984–4985.

51

Shen, M.; Xie, M. H.; Slack, J.; Waldrop, K.; Chen, Z.; Lyu, Z.; Cao, S. H.; Zhao, M.; Chi, M. F.; Pintauro, P. N. et al. Pt-Co truncated octahedral nanocrystals: A class of highly active and durable catalysts toward oxygen reduction. Nanoscale 2020, 12, 11718–11727.

52

Xia, T. Y.; Liu, J. L.; Wang, S. G.; Wang, C.; Sun, Y.; Gu, L.; Wang, R. M. Enhanced catalytic activities of NiPt truncated octahedral nanoparticles toward ethylene glycol oxidation and oxygen reduction in alkaline electrolyte. ACS Appl. Mater. Interfaces 2016, 8, 10841–10849.

53

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos , S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

54

Xiao, W. P.; Cordeiro, M. A. L.; Gao, G. Y.; Zheng, A. M.; Wang, J.; Lei, W.; Gong, M. X.; Lin, R. Q.; Stavitski, E.; Xin, H. L. L. et al. Atomic rearrangement from disordered to ordered Pd-Fe nanocatalysts with trace amount of Pt decoration for efficient electrocatalysis. Nano Energy 2018, 50, 70–78.

55

Lin, J. Y.; Xi, C.; Li, Z.; Feng, Y.; Wu, D. Y.; Dong, C. K.; Yao, P.; Liu, H.; Du, X. W. Lattice-strained palladium nanoparticles as active catalysts for the oxygen reduction reaction. Chem. Commun. 2019, 55, 3121–3123.

56

Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

57

Chattot , R.; Le Bacq, O.; Beermann, V.; Kühl, S.; Herranz, J.; Henning, S.; Kühn, L.; Asset, T.; Guétaz, L.; Renou, G. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 2018, 17, 827–833.

58

Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

59

Wang, Y. R.; Hu, R. M.; Li, Y. C.; Wang, F. H.; Shang, J. X.; Shui, J. L. High-throughput screening of carbon-supported single metal atom catalysts for oxygen reduction reaction. Nano Res. 2022, 15, 1054–1060.

60

Fu, Q. Q.; Li, H. H.; Ma, S. Y.; Hu, B. C.; Yu, S. H. A mixed-solvent route to unique PtAuCu ternary nanotubes templated from Cu nanowires as efficient dual electrocatalysts. Sci. China Mater. 2016, 59, 112–121.

61

Park, J.; Kabiraz, M. K.; Kwon, H.; Park, S.; Baik, H.; Choi, S. I.; Lee, K. Radially phase segregated PtCu@PtCuNi dendrite@frame nanocatalyst for the oxygen reduction reaction. ACS Nano 2017, 11, 10844–10851.

62

Luo, L. X.; Zhu, F. J.; Tian, R. X.; Li, L.; Shen, S. Y.; Yan, X. H.; Zhang, J. L. Composition-graded PdxNi1−x nanospheres with Pt monolayer shells as high-performance electrocatalysts for oxygen reduction reaction. ACS Catal. 2017, 7, 5420–5430.

63

Gao, Y.; Kong, D. B.; Liang, J. X.; Han, D. L.; Wang, B.; Yang, Q. H.; Zhi, L. J. Inside-out dual-doping effects on tubular catalysts: Structural and chemical variation for advanced oxygen reduction performance. Nano Res. 2022, 15, 361–367.

64

Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

65

Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942.

66

Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

67

Liang, Y. Y.; Lei, H.; Wang, S. J.; Wang, Z. L.; Mai, W. J. Pt/Zn heterostructure as efficient air-electrocatalyst for long-life neutral Zn-air batteries. Sci. China Mater. 2021, 64, 1868–1875.

68

Ji, X. L.; Lee, K. T.; Holden, R.; Zhang, L.; Zhang, J. J.; Botton, G. A.; Couillard, M.; Nazar, L. F. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat. Chem. 2010, 2, 286–293.

69

Liu, M. Y.; Xiao, X. D.; Li, Q.; Luo, L. Y.; Ding, M. H.; Zhang, B.; Li, Y. X.; Zou, J. L.; Jiang, B. J. Recent progress of electrocatalysts for oxygen reduction in fuel cells. J. Colloid Interface Sci. 2022, 607, 791–815.

70

Wu, W. J.; Zhou, Z. F.; Wang, Y.; Zhang, Y. T.; Wang, Y.; Wang, J. T.; Zou, Y. C. Manipulating the ionic nanophase of Nafion by in-situ precise hybridization with polymer quantum dot towards highly enhanced fuel cell performances. Nano Res. 2022, 15, 4124–4131.

71

Guo, J. C.; Gao, L.; Tan, X.; Yuan, Y. L.; Kim, J.; Wang, Y.; Wang, H.; Zeng, Y. J.; Choi, S. I.; Smith, S. C. et al. Template-directed rapid synthesis of Pd-based ultrathin porous intermetallic nanosheets for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 10942–10949.

Nano Research
Pages 7951-7958
Cite this article:
Wang X, Li J, Yang X, et al. Low-coordinated surface sites make truncated Pd tetrahedrons as robust ORR electrocatalysts outperforming Pt for DMFC devices. Nano Research, 2022, 15(9): 7951-7958. https://doi.org/10.1007/s12274-022-4492-2
Topics:

5854

Views

22

Crossref

21

Web of Science

21

Scopus

3

CSCD

Altmetrics

Received: 29 March 2022
Revised: 24 April 2022
Accepted: 01 May 2022
Published: 23 June 2022
© Tsinghua University Press 2022
Return