AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Carbon aerogel microspheres with in-situ mineralized TiO2 for efficient microwave absorption

Yue-Yi Wang1,§Jin-Long Zhu2,§Nan Li1Jun-Feng Shi1Jian-Hua Tang3Ding-Xiang Yan1( )Zhong-Ming Li2( )
School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
College of Chemical Engineering, Sichuan University, Chengdu 610065, China

§ Yue-Yi Wang and Jin-Long Zhu contributed equally to this work.

Show Author Information

Graphical Abstract

Cellulose derived carbon aerogel microspheres achieve the balance between attenuation characteristics and impedance matching performance in application of microwave absorption by in-situ mineralizing TiO2.

Abstract

Carbon aerogels (CAs) have been considered potential microwave absorption (MA) materials because of intrinsic hierarchical porous structure, low density, and excellent heat resistance. However, CAs always required to be ground into micron-scale powder before being used as microwave absorbers, which will inevitably destroy the hierarchical porous structure. Meanwhile, reproducing the optimized CAs powders is difficult. Herein, CAs microspheres with in-situ mineralized TiO2 were easily prepared via a sol–gel transition and calcination process. The uniform size of CA microspheres and the loaded TiO2 on the skeleton of CA yield great microwave attenuation performance while guaranteeing good impedance matching performance. The obtained TiO2/CA hybrid presented a minimum reflection loss value of −30.2 dB and a broad effective absorption bandwidth (reflection loss below −10 dB) of 6.2 GHz. The low density, MA performance, and controllable particle size make the novel TiO2/CA hybrid promising candidates for MA applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4494_MOESM1_ESM.pdf (643.2 KB)

References

1

Quan, B.; Gu, W. H.; Sheng, J. Q.; Lv, X. F.; Mao, Y. Y.; Liu, L.; Huang, X. G.; Tian, Z. J.; Ji, G. B. From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 2021, 14, 1495–1501.

2

Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/Epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

3

Wang, T.; Kong, W. W.; Yu, W. C.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett. 2021, 13, 162.

4

Lv, H. L.; Yang, Z. H.; Liu, B.; Wu, G. L.; Lou, Z. C.; Fei, B.; Wu, R. B. A flexible electromagnetic wave-electricity harvester. Nat. Commun. 2021, 12, 834.

5

Lv, H. L.; Yang, Z. H.; Pan, H. G.; Wu, R. B. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946.

6

Zhang, Z.; Tan, J. W.; Gu, W. H.; Zhao, H. Q.; Zheng, J.; Zhang, B. S.; Ji, G. B. Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 2020, 395, 125190.

7

Zhang, M.; Han, C.; Cao, W. Q.; Cao, M. S.; Yang, H. J.; Yuan, J. A Nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 2021, 13, 27.

8
Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res., in press, https://doi.org/10.1007/s12274-022-4159-z.
9

Wu, H. Y.; Jia, L. C.; Yan, D. X.; Gao, J. F.; Zhang, X. P.; Ren, P. G.; Li, Z. M. Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos. Sci. Technol. 2018, 156, 87–94.

10

Gou, G. J.; Meng, F. B.; Wang, H. G.; Jiang, M.; Wei, W.; Zhou, Z. W. Wheat straw-derived magnetic carbon foams: In-situ preparation and tunable high-performance microwave absorption. Nano Res. 2019, 12, 1423–1429.

11

Zhao, H. B.; Cheng, J. B.; Wang, Y. Z. Biomass-derived Co@crystalline carbon@carbon aerogel composite with enhanced thermal stability and strong microwave absorption performance. J. Alloys Compd. 2018, 736, 71–79.

12

Xi, J. B.; Zhou, E. Z.; Liu, Y. J.; Gao, W. W.; Ying, J.; Chen, Z. C.; Gao, C. Wood-based straightway channel structure for high performance microwave absorption. Carbon 2017, 124, 492–498.

13

Guo, L.; An, Q. D.; Xiao, Z. Y.; Zhai, S. R.; Cui, L.; Li, Z. C. Performance enhanced electromagnetic wave absorber from controllable modification of natural plant fiber. RSC Adv. 2019, 9, 16690–16700.

14

Zhao, H. Q.; Cheng, Y.; Lv, H. L.; Ji, G. B.; Du, Y. W. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 2019, 142, 245–253.

15

Li, Q. S.; Zhu, J. J.; Wang, S. N.; Huang, F.; Liu, Q. C.; Kong, X. K. Microwave absorption on a bare biomass derived holey silica-hybridized carbon absorbent. Carbon 2020, 161, 639–646.

16

Qiu, X.; Wang, L. X.; Zhu, H. L.; Guan, Y. K.; Zhang, Q. T. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 2017, 9, 7408–7418.

17

Wei, Y.; Liu, H. J.; Liu, S. C.; Zhang, M. M.; Shi, Y. P.; Zhang, J. W.; Zhang, L.; Gong, C. H. Waste cotton-derived magnetic porous carbon for high-efficiency microwave absorption. Compos. Commun. 2018, 9, 70–75.

18

Sun, X. X.; Yang, M. L.; Yang, S.; Wang, S. S.; Yin, W. L.; Che, R. C.; Li, Y. B. Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 2019, 15, 1902974.

19

Wang, Y. Y.; Zhou, Z. H.; Zhu, J. L.; Sun, W. J.; Yan, D. X.; Dai, K.; Li, Z. M. Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption. Compos. Part B:Eng. 2021, 220, 108985.

20

Liang, L. L.; Zhang, Z. Q.; Song, F.; Zhang, W.; Li, H.; Gu, J. J.; Liu, Q. L.; Zhang, D. Ultralight, flexible carbon hybrid aerogels from bacterial cellulose for strong microwave absorption. Carbon 2020, 162, 283–291.

21

Zhang, C.; Wu, Z. C.; Xu, C. Y.; Yang, B. T.; Wang, L.; You, W. B.; Che, R. C. Hierarchical Ti3C2Tx MXene/carbon nanotubes hollow microsphere with confined magnetic nanospheres for broadband microwave absorption. Small 2022, 18, 2104380.

22

Chen, X. T.; Wu, Y.; Gu, W. H.; Zhou, M.; Tang, S. L.; Cao, J. M.; Zou, Z. Q.; Ji, G. B. Research progress on nanostructure design and composition regulation of carbon spheres for the microwave absorption. Carbon 2022, 189, 617–633.

23

Wang, L.; Li, X.; Shi, X. F.; Huang, M. Q.; Li, X. H.; Zeng, Q. W.; Che, R. C. Recent progress of microwave absorption microspheres by magnetic–dielectric synergy. Nanoscale 2021, 13, 2136–2156.

24

Kumar, R.; Mondal, D. P.; Chaudhary, A.; Shafeeq, M.; Kumari, S. Excellent EMI shielding performance and thermal insulating properties in lightweight, multifunctional carbon-cenosphere composite foams. Compos. Part A:Appl. Sci. Manuf. 2018, 112, 475–484.

25

Jatoi, A. W.; Kim, I. S.; Ni, Q. Q. Cellulose acetate nanofibers embedded with AgNPs anchored TiO2 nanoparticles for long term excellent antibacterial applications. Carbohydr. Polym. 2019, 207, 640–649.

26

Zhou, Z. H.; Liang, Y.; Huang, H. D.; Li, L.; Yang, B.; Li, M. Z.; Yan, D. X.; Lei, J.; Li, Z. M. Structuring dense three-dimensional sheet-like skeleton networks in biomass-derived carbon aerogels for efficient electromagnetic interference shielding. Carbon 2019, 152, 316–324.

27

Wang, D.; Tan, Y.; Yu, L. N.; Xiao, Z. X.; Du, J.; Ling, J.; Li, N.; Wang, J. D.; Xu, S. M.; Huang, J. B. Tuning morphology and mechanical property of polyacrylamide/Laponite/titania dual nanocomposite hydrogels by titania. Polym. Compos. 2019, 40, E466–E475.

28

Xu, H. L.; Yin, X. W.; Zhu, M.; Li, M. H.; Zhang, H.; Wei, H. J.; Zhang, L. T.; Cheng, L. F. Constructing hollow graphene Nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 2019, 142, 346–353.

29

Sun, G. B.; Wu, H.; Liao, Q. L.; Zhang, Y. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. Nano Res. 2018, 11, 2689–2704.

30

Gao, S.; Zhang, G. Z.; Wang, Y.; Han, X. P.; Huang, Y.; Liu, P. B. MOFs derived magnetic porous carbon microspheres constructed by core–shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol. 2021, 88, 56–65.

31

Pawar, S. P.; Biswas, S.; Kar, G. P.; Bose, S. High frequency millimetre wave absorbers derived from polymeric nanocomposites. Polymer 2016, 84, 398–419.

32

Wang, Y. Y.; Zhou, Z. H.; Zhou, C. G.; Sun, W. J.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 8704–8712.

33

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

34

Lv, H. L.; Liang, X. H.; Cheng, Y.; Zhang, H. Q.; Tang, D. M.; Zhang, B. S.; Ji, G. B.; Du, Y. W. Coin-like α-Fe2O3@CoFe2O4 core–shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces 2015, 7, 4744–4750.

35

Xu, J. J.; Liu, J. W.; Che, R. C.; Liang, C. Y.; Cao, M. S.; Li, Y.; Liu, Z. W. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. Nanoscale 2014, 6, 5782–5790.

36

Dong, J. Y.; Ullal, R.; Han, J.; Wei, S. H.; Ouyang, X.; Dong, J. Z.; Gao, W. Partially crystallized TiO2 for microwave absorption. J. Mater. Chem. A 2015, 3, 5285–5288.

37

Zhou, X. D.; Han, H.; Wang, Y. C.; Zhang, C.; Lv, H. L.; Lou, Z. C. Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 121, 199–206.

38

Zhang, X. J.; Zhu, J. Q.; Yin, P. G.; Guo, A. P.; Huang, A. P.; Guo, L.; Wang, G. S. Tunable high-performance microwave absorption of Co1−xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. 2018, 28, 1800761.

39

Liu, X. F.; Hao, C. C.; He, L. H.; Yang, C.; Chen, Y. B.; Jiang, C. B.; Yu, R. H. Yolk–shell structured Co-C/void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 2018, 11, 4169–4182.

40

Wang, Y. Y.; Sun, W. J.; Yan, D. X.; Dai, K.; Li, Z. M. Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon 2021, 176, 118–125.

41

He, S.; Wang, G. S.; Lu, C.; Liu, J.; Wen, B.; Liu, H.; Guo, L.; Cao, M. S. Enhanced wave absorption of nanocomposites based on the synthesized complex symmetrical CuS nanostructure and poly(vinylidene fluoride). J. Mater. Chem. A 2013, 1, 4685–4692.

42

Sun, L.; Shi, Z. C.; He, B. L.; Wang, H. L.; Liu, S.; Huang, M. H.; Shi, J.; Dastan, D.; Wang, H. Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: A novel design targeting advanced energy storage capacitors. Adv. Funct. Mater. 2021, 31, 2100280.

43

Lv, H. L.; Yang, Z. H.; Xu, H. B.; Wang, L. Y.; Wu, R. B. An electrical switch-driven flexible electromagnetic absorber. Adv. Funct. Mater. 2019, 30, 1907251.

44

Li, F.; Zhan, W. W.; Su, Y. T.; Siyal, S. H.; Bai, G.; Xiao, W.; Zhou, A. S.; Sui, G.; Yang, X. P. Achieving excellent electromagnetic wave absorption of ZnFe2O4@CNT/polyvinylidene fluoride flexible composite membranes by adjusting processing conditions. Compos. Part A:Appl. Sci. Manuf. 2020, 133, 105866.

45

Xu, Z. J.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Huo, Y.; Kang, Y. F.; Wang, R. L.; Xu, R.; Peng, H. et al. Spider web-like carbonized bacterial cellulose/MoSe2 nanocomposite with enhanced microwave attenuation performance and tunable absorption bands. Nano Res. 2021, 14, 738–746.

46

Kong, L.; Wang, C.; Yin, X. W.; Fan, X. M.; Wang, W.; Huang, J. F. Electromagnetic wave absorption properties of a carbon nanotube modified by a tetrapyridinoporphyrazine interface layer. J. Mater. Chem. C 2017, 5, 7479–7488.

47

Yu, Y. L.; Wang, M.; Bai, Y. Q.; Zhang, B.; An, L. L.; Zhang, J. Y.; Zhong, B. Tuning the inner hollow structure of lightweight amorphous carbon for enhanced microwave absorption. Chem. Eng. J. 2019, 375, 121914.

48

Ye, F.; Song, Q.; Zhang, Z. C.; Li, W.; Zhang, S. Y.; Yin, X. W.; Zhou, Y. Z.; Tao, H. W.; Liu, Y. S.; Cheng, L. F. et al. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 2018, 28, 1707205.

49

Gupta, S.; Tai, N. H. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 2019, 152, 159–187.

50

Zhou, X. F.; Jia, Z. R.; Feng, A. L.; Wang, X. X.; Liu, J. J.; Zhang, M.; Cao, H. J.; Wu, G. L. Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 2019, 152, 827–836.

51

Wang, Y. Y.; Sun, W. J.; Lin, H.; Gao, P. P.; Gao, J. F.; Dai, K.; Yan, D. X.; Li, Z. M. Steric stabilizer-based promotion of uniform polyaniline shell for enhanced electromagnetic wave absorption of carbon nanotube/polyaniline hybrids. Compos. Part B:Eng. 2020, 199, 108309.

52

Liu, P. B.; Zhang, Y. Q.; Yan, J.; Huang, Y.; Xia, L.; Guang, Z. X. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2019, 368, 285–298.

53

Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

54

Li, X. L.; Yin, X. W.; Song, C. Q.; Han, M. K.; Xu, H. L.; Duan, W. Y.; Cheng, L. F.; Zhang, L. T. Self-assembly core–shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 2018, 28, 1803938.

55

Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M.; Jin, H. B.; Fang, X. Y.; Wang, W. Z.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 2013, 65, 124–139.

Nano Research
Pages 7723-7730
Cite this article:
Wang Y-Y, Zhu J-L, Li N, et al. Carbon aerogel microspheres with in-situ mineralized TiO2 for efficient microwave absorption. Nano Research, 2022, 15(8): 7723-7730. https://doi.org/10.1007/s12274-022-4494-0
Topics:
Part of a topical collection:

1267

Views

37

Crossref

33

Web of Science

34

Scopus

2

CSCD

Altmetrics

Received: 06 April 2022
Revised: 29 April 2022
Accepted: 02 May 2022
Published: 31 May 2022
© Tsinghua University Press 2022
Return