AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature

Zhigang Mu1Guoke Wei2( )Hang Zhang2Lu Gao2Yue Zhao1Shaolong Tang3Guangbin Ji1( )
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Aviation Key Laboratory of Science and Technology on Advanced Surface Engineering, AVIC Manufacturing Technology Institute, Beijing 100024, China
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Show Author Information

Graphical Abstract

The complex doping effect and temperature dependence of Mn ion spin state have an important effect on the dielectric behavior of La1−xSrxMn1−yFeyO3 perovskite materials at high temperature. The content of Mn3+ in the high-spin and low-spin states is dynamically changing with the increase of temperature. The spin state of Mn ions and the crystal structure of perovskite affect the high-temperature dielectric behavior of La1−xSrxMn1−yFeyO3 by acting on the double-exchange interaction, making it possible to maintain efficient absorption of electromagnetic waves in high temperature. In addition, the cellular array structure obtained by computer simulation technology (CST) simulation software can introduce magnetic loss and further improve the service temperature of materials.

Abstract

LaMnO3 perovskite has great potential in microwave absorption at high temperature due to its complex doping effect and super stability. The current research mainly focuses on the doping ratio regulation, while the mechanism of doping effect at high temperature is still lack of sufficient investigation. In this work, La1−xSrxMn1−yFeyO3 (LaMnO3, La0.7Sr0.3MnO3, and La0.7Sr0.3Mn0.8Fe0.2O3) nanostructures with different doping sites were successfully prepared by the solid phase reaction method. Then, the high temperature dielectric test samples were obtained by mixing with cordierite (2MgO·2Al2O3·5SiO2 (MAS)). The results showed that the temperature dependence of Mn ion spin state had a significant impact on the high temperature dielectric behavior of La1−xSrxMn1−yFeyO3. Particularly, when the thickness is only 1.9 mm, La0.7Sr0.3Mn0.8Fe0.2O3/MAS can achieve the widest bandwidth of 4.2 GHz covered the entire X-band (8.2–12.4 GHz) and a minimum reflection loss (RL) value of −17.99 dB at 500 °C. In order to improve the operating temperature of La0.7Sr0.3Mn0.8Fe0.2O3/MAS, a cellular array structure was designed by using computer simulation technology (CST) software to introduce magnetic loss. When the outer length of the hexagon is 1 mm and the coating thickness is 1.9 mm, the widest bandwidth covers the X-band and the minimum RL value is −15.35 dB at 800 °C. Therefore, La0.7Sr0.3Mn0.8Fe0.2O3 has a great prospect as an efficient high temperature microwave absorber.

Electronic Supplementary Material

Download File(s)
12274_2022_4500_MOESM1_ESM.pdf (1.1 MB)

References

1

Liu, X. F.; Li, Y.; Sun, X.; Tang, W. K.; Deng, G.; Liu, Y. J.; Song, Z. M.; Yu, Y. H.; Yu, R. H.; Dai, L. M. et al. Off/on switchable smart electromagnetic interference shielding aerogel. Matter 2021, 4, 1735–1747.

2
Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.
3

Hu, Y.; Huang, D. Q.; Shi, Y. Q.; Zhang, Y.; He, S.; Ding, H. Y. Research progress of high temperature microwave-absorbing ceramic matrix composites. J. Aeronaut. Mater. 2019, 39, 1–12.

4

Hou, T. Q.; Wang, B. B.; Jia, Z. R.; Wu, H. J.; Lan, D.; Huang, Z. Y.; Feng, A. L.; Ma, M. L.; Wu, G. L. A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective. J. Mater. Sci. Mater. Electron. 2019, 30, 10961–10984.

5

Jia, Z. R.; Lin, K. J.; Wu, G. L.; Xing, H.; Wu, H. J. Recent progresses of high-temperature microwave-absorbing materials. Nano 2018, 13, 1830005.

6

Mouchon, E.; Colomban, P. Microwave absorbent: Preparation, mechanical properties and r. f. -microwave conductivity of SiC (and/or mullite) fibre reinforced nasicon matrix composites. J. Mater. Sci. 1996, 31, 323–334.

7

Saleem, M. I.; Yang, S. Y.; Batool, A.; Sulaman, M.; Veeramalai, C. P.; Jiang, Y. R.; Tang, Y.; Cui, Y. Y.; Tang, L. B.; Zou, B. S. CsPbI3 nanorods as the interfacial layer for high-performance, all-solution-processed self-powered photodetectors. J. Mater. Sci. Technol. 2021, 75, 196–204.

8

Lai, M. L.; Kong, Q.; Bischak, C. G.; Yu, Y.; Dou, L. T.; Eaton, S. W.; Ginsberg, N. S.; Yang, P. D. Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res. 2017, 10, 1107–1114.

9

Bally, M. A. A.; Khan, F. A. Structural, dielectric and magnetic properties of La0.55Sr0.45MnO3 polycrystalline perovskite. J. Magn. Magn. Mater. 2020, 509, 166897.

10

Yang, Z. N.; Luo, F.; Xu, J. S.; Zhou, W. C.; Zhu, D. M. Dielectric and microwave absorption properties of LaSrMnO3/Al2O3 ceramic coatings fabricated by atmospheric plasma spraying. J. Alloys Compd. 2016, 662, 607–611.

11

Khan, M. S.; Kim, H. J.; Taniguchi, T.; Ebina, Y.; Sasaki, T.; Osada, M. Layer-by-layer engineering of two-dimensional perovskite nanosheets for tailored microwave dielectrics. Appl. Phys. Exp. 2017, 10, 091501.

12

Gao, L.; Zhang, R. D.; Wei, C. K.; Yin, Y. C.; Zhang, H. The dielectric and microwave absorption properties variation with temperature of La0.5Sr0.5CoO3 ceramics and improved microwave absorption by FSS. Ceram. Int. 2021, 47, 26430–26437.

13

Fauziyah, I.; Kurniawan, B.; Yandra, E. P. The effect incorporation of Ni = 0.05 at Mn site on microwave absorption properties of La0.67Sr0.33MnO3 material. J. Phys. Conf. Ser. 2018, 983, 012019.

14

Reshi, H. A.; Singh, A. P.; Pillai, S.; Yadav, R. S.; Dhawan, S. K.; Shelke, V. Nanostructured La0.7Sr0.3MnO3 compounds for effective electromagnetic interference shielding in the X-band frequency range. J. Mater. Chem. C 2015, 3, 820–827.

15

Flores-Lasluisa, J. X.; Huerta, F.; Cazorla-Amorós, D.; Morallón, E. Structural and morphological alterations induced by cobalt substitution in lamno3 perovskites. J. Colloid Interface Sci. 2019, 556, 658–666.

16

Hozoi, L.; De Vries, A. H.; Broer, R. X-ray spectroscopy at the Mn k edge in LaMnO3:An ab initio study. Phys. Rev. B 2001, 64, 165104.

17

Wang, K. P.; Ma, Y. C.; Betzler, K. Defect-induced spin deterioration of La0.64Sr0.36MnO3: Ab initio study. Phys. Rev. B 2007, 76, 144431.

18

Yu, Y. H.; Yi, P.; Xu, W. B.; Sun, X.; Deng, G.; Liu, X. F.; Shui, J. L.; Yu, R. H. Environmentally tough and stretchable mxene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 2022, 14, 77.

19

Hou, T. Q.; Jia, Z. R.; Feng, A. L.; Zhou, Z. H.; Liu, X. H.; Lv, H. L.; Wu, G. L. Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity. J. Mater. Sci. Technol. 2021, 68, 61–69.

20

Zhao, H. Q.; Cheng, Y.; Zhang, Z.; Zhang, B. S.; Pei, C. C.; Fan, F. Y.; Ji, G. B. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 2021, 173, 501–511.

21

Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

22

Zhao, Y.; Hao, L. L.; Zhang, X. D.; Tan, S. J.; Li, H. H.; Zheng, J.; Ji, G. B. A novel strategy in electromagnetic wave absorbing and shielding materials design: Multi-responsive field effect. Small Sci. 2022, 2, 2100077.

23

Khan, T. T.; Ur, S. C. Thermoelectric properties of the perovskite-type oxide SrTi1−xNbxO3 synthesized by solid-state reaction method. Electron. Mater. Lett. 2018, 14, 336–341.

24

Wang, F.; Gu, W. H.; Chen, J. B.; Wu, Y.; Zhou, M.; Tang, S. L.; Cao, X. Z.; Zhang, P.; Ji, G. B. The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res. 2022, 15, 3720–3728.

25

Zhu, R. Q.; Li, Z. Y.; Deng, G.; Yu, Y. H.; Shui, J. L.; Yu, R. H.; Pan, C. F.; Liu, X. F. Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 2022, 92, 106700.

26

Xiao, Y.; Huang, H. X.; Liang, D. M.; Wang, C. Electrocatalytic properties and modification of La0.6Ca0.4Co1−xMnxO3 (x = 0–0.9) perovskite-type oxides. Chem. Phys. Lett. 2020, 738, 136846.

27

Deka, D. J.; Kim, J.; Gunduz, S.; Jain, D.; Shi, Y. J.; Miller, J. T.; Co, A. C.; Ozkan, U. S. Coke formation during high-temperature CO2 electrolysis over AFeO3 (A = La/Sr) cathode: Effect of A-site metal segregation. Appl. Catal. , B Environ. 2021, 283, 119642.

28

Zhang, G.; Liu, G.; Wang, L. Z.; Irvine, J. T. S. Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 2016, 45, 5951–5984.

29

Thenmozhi, N.; Sasikumar, S.; Sonai, S.; Saravanan, R. Electronic structure and chemical bonding in La1−xSrxMnO3 perovskite ceramics. Mater. Res. Express 2017, 4, 046103.

30

Cai, C. K.; Xie, M. Y.; Xue, K.; Shi, Y.; Li, S. T.; Liu, Y. Y.; An, S. L.; Yang, H. Enhanced electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode via Ba-doping for intermediate-temperature solid oxide fuel cells. Nano Res. 2022, 15, 3264–3272.

31

Hemberger, J.; Krimmel, A.; Kurz, T.; Von Nidda, H. A. K.; Ivanov, V. Y.; Mukhin, A. A.; Balbashov, A. M.; Loidl, A. Structural, magnetic, and electrical properties of single-crystalline La1−xSrxMnO3 (0.4 < x < 0.85). Phys. Rev. B 2002, 66, 094410.

32

Aguado, F.; Rodriguez, F.; Núñez, P. Pressure-induced Jahn–Teller suppression and simultaneous high-spin to low-spin transition in the layered perovskite CsMnF4. Phys. Rev. B 2007, 76, 094417.

33

Zener, C. Interaction between the d-shells in the transition metals. III. Calculation of the weiss factors in Fe, Co, and Ni. Phys. Rev. 1951, 83, 299–301.

34

Zhu, H. Y.; Zhang, P. F.; Dai, S. Recent advances of lanthanum-based perovskite oxides for catalysis. ACS Catal. 2015, 5, 6370–6385.

35

Uzelac, M.; Mastropierro, P.; De Tullio, M.; Borilovic, I.; Tarrés, M.; Kennedy, A. R.; Aromí, G.; Hevia, E. Tandem Mn-I exchange and homocoupling processes mediated by a synergistically operative lithium manganate. Angew. Chem., Int. Ed. 2021, 60, 3247–3253.

36

Zhao, D. Y.; Yang, Y. X.; Gao, Z. N.; Tian, Y.; Zhang, J.; Jiang, Z.; Li, X. G. A-site defects in LaSrMnO3 perovskite-based catalyst promoting NOx storage and reduction for lean-burn exhausts. J. Rare Earths 2021, 39, 959–968.

37

Wang, F.; Gu, W. H.; Chen, J. B.; Huang, Q. Q.; Han, M. Y.; Wang, G. H.; Ji, G. B. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption. J. Mater. Sci. Technol. 2022, 105, 92–100.

38

Meng, F. B.; Wang, H. G.; Wei, W.; Chen, Z. J.; Li, T.; Li, C. Y.; Xuan, Y.; Zhou, Z. W. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nano Res. 2018, 11, 2847–2861.

39

Li, Y.; Cao, M. S.; Wang, D. W.; Yuan, J. High-efficiency and dynamic stable electromagnetic wave attenuation for la doped bismuth ferrite at elevated temperature and gigahertz frequency. RSC Adv. 2015, 5, 77184–77191.

40

Calame, J. P.; Battat, J. Narrowband microwave dielectric resonance and negative permittivity behavior in hydrogen-fired Al2O3-CuO composites. J. Am. Ceram. Soc. 2006, 89, 3865–3867.

41

Asakura, D.; Nanba, Y.; Okubo, M.; Mizuno, Y.; Niwa, H.; Oshima, M.; Zhou, H. S.; Okada, K.; Harada, Y. Distinguishing between high- and low-spin states for divalent Mn in Mn-based prussian blue analogue by high-resolution soft X-ray emission spectroscopy. J. Phys. Chem. Lett. 2014, 5, 4008–4013.

42

Kamata, H.; Yonemura, Y.; Mizusaki, J.; Tagawa, H.; Naraya, K.; Sasamoto, T. High temperature electrical properties of the perovskite-type oxide La1−xSrxMnO3−d. J. Phys. Chem. Solids 1995, 56, 943–950.

43

Abbate, M.; Fuggle, J. C.; Fujimori, A.; Tjeng, L. H.; Chen, C. T.; Potze, R.; Sawatzky, G. A.; Eisaki, H.; Uchida, S. Electronic structure and spin-state transition of LaCoO3. Phys. Rev. B 1993, 47, 16124–16130.

44

Wu, D.; Chen, G. D.; Ge, C. Y.; Hu, Z. P.; He, X. H.; Li, X. G. DFT+U analysis on stability of low-index facets in hexagonal LaCoO3 perovskite:Effect of Co3+ spin states. Chin. J. Chem. Phys. 2017, 30, 295–302.

45

Hueso, J. L.; Holgado, J. P.; Pereñíguez, R.; Mun, S.; Salmeron, M.; Caballero, A. Chemical and electronic characterization of cobalt in a lanthanum perovskite Effects of strontium substitution. J. Solid State Chem. 2010, 183, 27–32.

46

Tokura, Y.; Tomioka, Y.; Kuwahara, H.; Asamitsu, A.; Moritomo, Y.; Kasai, M. Origins of colossal magnetoresistance in perovskite-type manganese oxides (invited). J. Appl. Phys. 1996, 79, 5288.

47

Quan, B.; Gu, W. H.; Sheng, J. Q.; Lv, X. F.; Mao, Y. Y.; Liu, L.; Huang, X. G.; Tian, Z. J.; Ji, G. B. From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 2021, 14, 1495–1501.

48

Gu, W. H.; Cui, X. Q.; Zheng, J.; Yu, J. W.; Zhao, Y.; Ji, G. B. Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation. J. Mater. Sci. Technol. 2021, 67, 265–272.

49

Raddaoui, Z.; El Kossi, S.; Al-Shahrani, T.; Bourguiba, M.; Dhahri, J.; Chafra, M.; Belmabrouk, H. Study of structural, conduction mechanism and dielectric behavior of La0.7Sr0.3Mn0.8Fe0.2O3 manganite. J. Mater. Sci. Mater. Electron. 2020, 31, 21732–21746.

50

Kumar, N.; Kishan, H.; Rao, A.; Awana, V. P. S. Fe ion doping effect on electrical and magnetic properties of La0.7Ca0.3Mn1−xFexO3 (0 ≤ x ≤ 1). J. Alloys Compd. 2010, 502, 283–288.

51

Kallias, G.; Pissas, M.; Devlin, E.; Simopoulos, A. Mössbauer study of 57Fe-doped La1−xCaxMnO3 (x = 0. 5, 0. 6). Phys. Rev. B 2002, 65, 144426.

52

Tkachuk, A.; Rogacki, K.; Brown, D. E.; Dabrowski, B.; Fedro, A. J.; Kimball, C. W.; Pyles, B.; Xiong, X.; Rosenmann, D.; Dunlap, B. D. Dynamics of phase stability and magnetic order in magnetoresistive La0.83Sr0.17Mn0.98 57Fe0.02O3. Phys. Rev. B 1998, 57, 8509.

53

Baazaoui, M.; Zemni, S.; Boudard, M.; Rahmouni, H.; Gasmi, A.; Selmi, A.; Oumezzine, M. Magnetic and electrical behaviour of La0.67Ba0.33Mn1−xFexO3 perovskites. Mater. Lett. 2009, 63, 2167–2170.

54

Astik, N.; Jha, P. K.; Pratap, A. Structural, morphological, differential scanning calorimetric and thermogravimetric studies of ball milled Fe doped nanoscale La0.67Sr0.33MnO3 manganite. J. Electron. Mater. 2018, 47, 1937–1943.

55

Astik, N.; Jha, P. K.; Sathe, V. Temperature dependent Raman spectroscopic study of the Fe doped La0.67Sr0.33MnO3 prepared using ball milling method. Phys. Solid State 2019, 61, 618–626.

56

Baazaoui, M.; Zemni, S.; Boudard, M.; Rahmouni, H.; Oumezzine, M.; Selmi, A. Conduction mechanism in La0.67Ba0.33Mn1-xFexO3 (x= 0−0.2) perovskites. Phys. B Condensed Matt. 2010, 405, 1470–1474.

57

Sharif, S.; Murtaza, G.; Meydan, T.; Williams, P. I.; Cuenca, J.; Hashimdeen, S. H.; Shaheen, F.; Ahmad, R. Structural, surface morphology, dielectric and magnetic properties of holmium doped BiFeO3 thin films prepared by pulsed laser deposition. Thin Solid Films 2018, 662, 83–89.

58

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

59

Huang, L. X.; Duan, Y. P.; Dai, X. H.; Zeng, Y. S.; Ma, G. J.; Liu, Y.; Gao, S. H.; Zhang, W. P. Bioinspired metamaterials: Multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 2019, 15, 1902730.

60

Zhao, S. X.; Ma, H.; Shao, T. Q.; Wang, J.; Yang, Z. N.; Meng, Y. Y.; Feng, M. D.; Yan, M. B.; Wang, J. F.; Qu, S. B. High temperature metamaterial enhanced electromagnetic absorbing coating prepared with alumina ceramic. J. Alloys Compd. 2021, 874, 159822.

61

Wan, F.; Yan, J. H.; Xu, H. M. Improved mechanical and high-temperature electromagnetic wave absorption properties of SiCf/BN/AlPO4 composites with absorber multiwalled carbon nanotubes. Compos. Interfaces 2020, 28, 809–826.

62

Liu, X. Z.; Luo, H.; Yang, J. J.; Wang, X.; Qu, Z. W.; Luo, H.; Gong, R. Z. Enhancement on high-temperature microwave absorption properties of TiB2-MgO composites with multi-interfacial effects. Ceram. Int. 2021, 47, 4475–4485.

63

Shao, T. Q.; Ma, H.; Wang, J.; Yan, M. B.; Feng, M. D.; Yang, Z. N.; Zhou, Q.; Wang, J. F.; Meng, Y. Y.; Zhao, S. X. et al. Ultra-thin and high temperature nicraly alloy metamaterial enhanced radar absorbing coating. J. Alloys Compd. 2020, 832, 154945.

64

Shao, T. Q.; Ma, H.; Wang, J.; Feng, M. D.; Yan, M. B.; Wang, J. F.; Yang, Z. N.; Zhou, Q.; Luo, H.; Qu, S. B. High temperature absorbing coatings with excellent performance combined Al2O3 and TiC material. J. Eur. Ceram. Soc. 2020, 40, 2013–2019.

65

Zhang, Y. L.; Wang, X. X.; Cao, M. S. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018, 11, 1426–1436.

Nano Research
Pages 7731-7741
Cite this article:
Mu Z, Wei G, Zhang H, et al. The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Research, 2022, 15(8): 7731-7741. https://doi.org/10.1007/s12274-022-4500-6
Topics:
Part of a topical collection:

1436

Views

74

Crossref

73

Web of Science

74

Scopus

7

CSCD

Altmetrics

Received: 08 April 2022
Revised: 01 May 2022
Accepted: 04 May 2022
Published: 03 June 2022
© Tsinghua University Press 2022
Return