Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In the tumor immunosuppressive microenvironment (TIME), antigen presenting cells (APCs) usually exhibit a tumor suppressor phenotype. Toll-like receptors (TLRs) agonists could reprogram M2-type macrophages to M1-type and stimulate dendritic cells (DCs) maturation. The combination of TLR7/8 and TLR9 agonists seems to have synergistic therapeutic efficacy. Here, we designed a lipid-coated mesoporous silica nanoparticle (MSNs@Lipo) for the co-delivery of TLR7/8 agonist resiquimod (R848) and TLR9 agonist CpG oligodeoxynucleotides (ODNs) (CpG@MSNs-R@L-M). R848 was firstly conjugated onto the nanoparticle via silane chemistry, which is acidic responsive drug release. Then, CpG was loaded onto the nanoparticle through the positive charge mainly from TLR7/8 agonist R848. Our in vitro experiments further indicated that both drugs have acid-responsive release properties and could be taken up by DCs and located on the endosomes of APCs. More importantly, CpG@MSNs-R@L-M could significantly improve the antitumor efficacy in B16F10 melanoma model. The mechanistic study demonstrated that CpG@MSNs-R@L-M could remarkably modulate the TIME by promoting the maturation of DCs and repolarizing macrophages from M2 to M1 phenotype and facilitating the infiltration of tumor cytotoxic T cells. It was concluded that in comparison to single agonist, the co-delivery of dual agonists, CpG and R848, can improve anti-tumor immune responses for cancer immunotherapy.
Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489.
Chen, D. S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10.
Chanmee, T.; Ontong, P.; Konno, K.; Itano, N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 2014, 6, 1670–1690.
Binnewies, M.; Roberts, E. W.; Kersten, K.; Chan, V.; Fearon, D. F.; Merad, M.; Coussens, L. M.; Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Hedrick, C. C. et al. Understanding the tumor immune microenvironment (time) for effective therapy. Nat. Med. 2018, 24, 541–550.
Hinshaw, D. C.; Shevde, L. A. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019, 79, 4557–4566.
Song, W. T.; Das, M.; Xu, Y. D.; Si, X. H.; Zhang, Y.; Tang, Z. H.; Chen, X. S. Leveraging biomaterials for cancer immunotherapy: Targeting pattern recognition receptors. Mater. Today Nano 2019, 5, 100029.
Gao, M.; Xie, Y. Q.; Lei, K. W.; Zhao, Y.; Kurum, A.; Van Herck, S.; Guo, Y. G.; Hu, X. M.; Tang, L. A manganese phosphate nanocluster activates the cGAS-STING pathway for enhanced cancer immunotherapy. Adv. Ther. 2021, 4, 2100065.
Maisonneuve, C.; Bertholet, S.; Philpott, D. J.; De Gregorio, E. Unleashing the potential of nod- and toll-like agonists as vaccine adjuvants. Proc. Nat. l Acad. Sci. USA 2014, 111, 12294–12299.
Kaczanowska, S.; Joseph, A. M.; Davila, E. TLR agonists: Our best frenemy in cancer immunotherapy. J. Leukoc. Biol. 2013, 93, 847–863.
O'Neill, L. A. J.; Golenbock, D.; Bowie, A. G. The history of toll-like receptors—Redefining innate immunity. Nat. Rev. Immunol. 2013, 13, 453–460.
Smits, E. L. J. M.; Ponsaerts, P.; Berneman, Z. N.; Van Tendeloo, V. F. I. The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 2008, 13, 859–875.
Rodell, C. B.; Arlauckas, S. P.; Cuccarese, M. F.; Garris, C. S.; Li, R.; Ahmed, M. S.; Kohler, R. H.; Pittet, M. J.; Weissleder, R. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2018, 2, 578–588.
Wan, D. D.; Que, H. Y.; Chen, L.; Lan, T. X.; Hong, W. Q.; He, C.; Yang, J. Y.; Wei, Y. Q.; Wei, X. W. Lymph-node-targeted cholesterolized TLR7 agonist liposomes provoke a safe and durable antitumor response. Nano Lett. 2021, 21, 7960–7969.
Li, J.; Pei, H.; Zhu, B.; Liang, L.; Wei, M.; He, Y.; Chen, N.; Li, D.; Huang, Q.; Fan, C. H. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 2011, 5, 8783–8789.
Wu, J. S.; Li, J. X.; Shu, N.; Duan, Q. J.; Tong, Q. S.; Zhang, J. Y.; Huang, Y. C.; Yang, S. Y.; Zhao, Z. B.; Du, J. Z. A polyamidoamine (PAMAM) derivative dendrimer with high loading capacity of TLR7/8 agonist for improved cancer immunotherapy. Nano Res. 2022, 15, 510–518.
Chen, H. C.; Zhan, X.; Tran, K. K.; Shen, H. Selectively targeting the toll-like receptor 9 (TLR9)-IRF 7 signaling pathway by polymer blend particles. Biomaterials 2013, 34, 6464–6472.
Wang, L.; He, Y.; He, T. T.; Liu, G.; Lin, C. H.; Li, K.; Lu, L.; Cai, K. Y. Lymph node-targeted immune-activation mediated by imiquimod-loaded mesoporous polydopamine based-nanocarriers. Biomaterials 2020, 255, 120208.
Blasius, A. L.; Beutler, B. Intracellular toll-like receptors. Immunity 2010, 32, 305–315.
Ni, Q. Q.; Zhang, F. W.; Liu, Y. J.; Wang, Z. T.; Yu, G. C.; Liang, B.; Niu, G.; Su, T.; Zhu, G.; Lu, G. M. et al. A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer. Sci. Adv. 2020, 6, eaaw6071.
Kawai, T.; Akira, S. TLR signaling. Cell Death Differentiat. 2006, 13, 816–825.
Engel, A. L.; Holt, G. E.; Lu, H. L. The pharmacokinetics of toll-like receptor agonists and the impact on the immune system. Exp. Rev. Clin. Pharmacol. 2011, 4, 275–289.
Atukorale, P. U.; Raghunathan, S. P.; Raguveer, V.; Moon, T. J.; Zheng, C.; Bielecki, P. A.; Wiese, M. L.; Goldberg, A. L.; Covarrubias, G.; Hoimes, C. J. et al. Nanoparticle encapsulation of synergistic immune agonists enables systemic codelivery to tumor sites and IFNβ-driven antitumor immunity. Cancer Res. 2019, 79, 5394–5406.
Xia, H. M.; Qin, M. M.; Wang, Z. H.; Wang, Y. Q.; Chen, B. L.; Wan, F. J.; Tang, M. M.; Pan, X. Q.; Yang, Y.; Liu, J. X. et al. A ph-/enzyme-responsive nanoparticle selectively targets endosomal toll-like receptors to potentiate robust cancer vaccination. Nano Lett. 2022, 22, 2978–2987.
Madan-Lala, R.; Pradhan, P.; Roy, K. Combinatorial delivery of dual and triple TLR agonists via polymeric pathogen-like particles synergistically enhances innate and adaptive immune responses. Sci. Rep. 2017, 7, 2530.
Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175–196.
Shao, K.; Singha, S.; Clemente-Casares, X.; Tsai, S.; Yang, Y.; Santamaria, P. Nanoparticle-based immunotherapy for cancer. ACS Nano 2015, 9, 16–30.
Peng, F.; Setyawati, M. I.; Tee, J. K.; Ding, X. G.; Wang, J. P.; Nga, M. E.; Ho, H. K.; Leong, D. T. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol 2019, 14, 279–286.
Setyawati, M. I.; Tay, C. Y.; Chia, S. L.; Goh, S. L.; Fang, W.; Neo, M. J.; Chong, H. C.; Tan, S. M.; Loo, S. C. J.; Ng, K. W. et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun. 2013, 4, 1673.
Zhu, D. W.; Hu, C. Y.; Fan, F.; Qin, Y.; Huang, C. L.; Zhang, Z. M.; Lu, L.; Wang, H.; Sun, H. F.; Leng, X. G. et al. Co-delivery of antigen and dual agonists by programmed mannose-targeted cationic lipid-hybrid polymersomes for enhanced vaccination. Biomaterials 2019, 206, 25–40.
Shaikh, I. M.; Tan, K. B.; Chaudhury, A.; Liu, Y. J.; Tan, B. J.; Tan, B. M. J.; Chiu, G. N. C. Liposome co-encapsulation of synergistic combination of irinotecan and doxorubicin for the treatment of intraperitoneally grown ovarian tumor xenograft. J. Control. Release 2013, 172, 852–861.
Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S. Y.; Sood, A. K.; Hua, S. S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015, 6, 286.
Bimbo, L. M.; Denisova, O. V.; Mäkilä, E.; Kaasalainen, M.; De Brabander, J. K.; Hirvonen, J.; Salonen, J.; Kakkola, L.; Kainov, D.; Santos, H. A. Inhibition of influenza a virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles. ACS Nano 2013, 7, 6884–6893.
Tarn, D.; Ashley, C. E.; Xue, M.; Carnes, E. C.; Zink, J. I.; Brinker, C. J. Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Acc. Chem. Res. 2013, 46, 792–801.
Mukherjee, M. B.; Mullick, R.; Reddy, B. U.; Das, S.; Raichur, A. M. Galactose functionalized mesoporous silica nanoparticles as delivery vehicle in the treatment of hepatitis c infection. ACS Appl. Bio Mater. 2020, 3, 7598–7610.
Parrott, M. C.; Finniss, M.; Luft, J. C.; Pandya, A.; Gullapalli, A.; Napier, M. E.; DeSimone, J. M. Incorporation and controlled release of silyl ether prodrugs from print nanoparticles. J. Am. Chem. Soc. 2012, 134, 7978–7982.
Wagner, J.; Gößl, D.; Ustyanovska, N.; Xiong, M. Y.; Hauser, D.; Zhuzhgova, O.; Hočevar, S.; Taskoparan, B.; Poller, L.; Datz, S. et al. Mesoporous silica nanoparticles as pH-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice. ACS Nano 2021, 15, 4450–4466.
Butler, K. S.; Durfee, P. N.; Theron, C.; Ashley, C. E.; Carnes, E. C.; Brinker, C. J. Protocells: Modular mesoporous silica nanoparticle-supported lipid bilayers for drug delivery. Small 2016, 12, 2173–2185.
Epler, K.; Padilla, D.; Phillips, G.; Crowder, P.; Castillo, R.; Wilkinson, D.; Wilkinson, B.; Burgard, C.; Kalinich, R.; Townson, J. et al. Delivery of ricin toxin A-chain by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. Adv. Healthc. Mater. 2012, 1, 348–353.
Vahed, S. Z.; Salehi, R.; Davaran, S.; Sharifi, S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Eng. C 2017, 71, 1327–1341.
Mornet, S.; Lambert, O.; Duguet, E.; Brisson, A. The formation of supported lipid bilayers on silica nanoparticles revealed by cryoelectron microscopy. Nano Lett. 2005, 5, 281–285.
LaBauve, A. E.; Rinker, T. E.; Noureddine, A.; Serda, R. E.; Howe, J. Y.; Sherman, M. B.; Rasley, A.; Brinker, C. J.; Sasaki, D. Y.; Negrete, O. A. Lipid-coated mesoporous silica nanoparticles for the delivery of the ML336 antiviral to inhibit encephalitic alphavirus infection. Sci. Rep. 2018, 8, 13990.
Van Schooneveld, M. M.; Vucic, E.; Koole, R.; Zhou, Y.; Stocks, J.; Cormode, D. P.; Tang, C. Y.; Gordon, R. E.; Nicolay, K.; Meijerink, A. et al. Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: A multimodality investigation. Nano Lett. 2008, 8, 2517–2525.
Choi, E. S.; Song, J.; Kang, Y. Y.; Mok, H. Mannose-modified serum exosomes for the elevated uptake to murine dendritic cells and lymphatic accumulation. Macromol. Biosci. 2019, 19, 1900042.
Wang, D.; Huang, J. B.; Wang, X. X.; Yu, Y.; Zhang, H.; Chen, Y.; Liu, J. J.; Sun, Z. G.; Zou, H.; Sun, D. X. et al. The eradication of breast cancer cells and stem cells by 8-hydroxyquinoline-loaded hyaluronan modified mesoporous silica nanoparticle-supported lipid bilayers containing docetaxel. Biomaterials 2013, 34, 7662–7673.
Teng, I. T.; Chang, Y. J.; Wang, L. S.; Lu, H. Y.; Wu, L. C.; Yang, C. M.; Chiu, C. C.; Yang, C. H.; Hsu, S. L.; Ho, J. A. A. Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials 2013, 34, 7462–7470.
Roggers, R. A.; Lin, V. S. Y.; Trewyn, B. G. Chemically reducible lipid bilayer coated mesoporous silica nanoparticles demonstrating controlled release and hela and normal mouse liver cell biocompatibility and cellular internalization. Mol. Pharmaceutics 2012, 9, 2770–2777.
Wan, X. J.; Wang, D.; Liu, S. Y. Fluorescent pH-sensing organic/inorganic hybrid mesoporous silica nanoparticles with tunable redox-responsive release capability. Langmuir 2010, 26, 15574–15579.
Ye, J.; Yang, Y. F.; Dong, W. J.; Gao, Y.; Meng, Y. Y.; Wang, H. L.; Li, L.; Jin, J.; Ji, M.; Xia, X. J. et al. Drug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages. Int J Nanomedicine 2019, 14, 3203–3220.
Yang, R.; Xu, J.; Xu, L. G.; Sun, X. Q.; Chen, Q.; Zhao, Y. H.; Peng, R.; Liu, Z. Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano 2018, 12, 5121–5129.
Casey, J. R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 2010, 11, 50–61.
Hu, Y. B.; Dammer, E. B.; Ren, R. J.; Wang, G. The endosomal-lysosomal system: From acidification and cargo sorting to neurodegeneration. Transl. Neurodegener. 2015, 4, 18.
Michaelis, K. A.; Norgard, M. A.; Zhu, X. X.; Levasseur, P. R.; Sivagnanam, S.; Liudahl, S. M.; Burfeind, K. G.; Olson, B.; Pelz, K. R.; Ramos, D. M. A. et al. The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer. Nat. Commun. 2019, 10, 4682.
Tsai, S. J.; Andorko, J. I.; Zeng, X. B.; Gammon, J. M.; Jewell, C. M. Polyplex interaction strength as a driver of potency during cancer immunotherapy. Nano Res. 2018, 11, 5642–5656.
Gardner, A.; Ruffell, B. Dendritic cells and cancer immunity. Trends Immunol. 2016, 37, 855–865.