AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Controllable Ni/NiO interface engineering on N-doped carbon spheres for boosted alkaline water-to-hydrogen conversion by urea electrolysis

Xiujuan Xu1Xianbiao Hou1Puyu Du1Canhui Zhang1Shucong Zhang1Huanlei Wang1Arafat Toghan2,3( )Minghua Huang1( )
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt
Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
Show Author Information

Graphical Abstract

Our work deliberately constructs the ideal model system for identifying the contributions of crystalline/amorphous or crystalline/crystalline heterostructure on improving catalytic activity toward urea electrolysis

Abstract

Interface engineering has gradually attracted substantial research interest in constructing active bifunctional catalysts toward urea electrolysis. The fundamental understanding of the crystallinity transition of the components on both sides of the interface is extremely significant for realizing controllable construction of catalysts through interface engineering, but it still remains a challenge. Herein, the Ni/NiO heterogenous nanoparticles are successfully fabricated on the porous N-doped carbon spheres by a facile hydrothermal and subsequent pyrolysis strategy. And for the first time we show the experimental observation that the Ni/NiO interface can be fine-tuned via simply tailoring the heating rate during pyrolysis process, in which the crystalline/amorphous or crystalline/crystalline Ni/NiO heterostructure is deliberately constructed on the porous N-doped carbon spheres (named as CA-Ni/NiO@NCS or CC-Ni/NiO@NCS, respectively). By taking advantage of the unique porous architecture and the synergistic effect between crystalline Ni and amorphous NiO, the well-designed CA-Ni/NiO@NCS displays more remarkable urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) activity than its crystalline/crystalline counterpart of CC-Ni/NiO@NCS. Particularly, the whole assembled two-electrode electrolytic cell using the elaborate CA-Ni/NiO@NCS both as the anode and cathode can realize the current density of 10 mA·cm−2 at a super low voltage of 1.475 V (264 mV less than that of pure water electrolysis), as well as remarkable prolonged stability over 63 h. Besides, the H2 evolution driven by an AA battery and a commercial solar cell is also studied to enlighten practical applications for the future.

Electronic Supplementary Material

Download File(s)
12274_2022_4505_MOESM1_ESM.pdf (10.2 MB)

References

1

Qian, G. F.; Chen, J. L.; Yu, T. Q.; Liu, J. C.; Luo, L.; Yin, S. B. Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 2022, 14, 20.

2

Xu, X. J.; Du, P. Y.; Chen, Z. K.; Huang, M. H. An electrodeposited cobalt-selenide-based film as an efficient bifunctional electrocatalyst for full water splitting. J. Mater. Chem. A 2016, 4, 10933–10939.

3

Zhang, H.; Xi, B. J.; Gu. Y.; Chen, W. H.; Xiong, S. L. Interface engineering and heterometal doping Mo-NiS/Ni(OH)2 for overall water splitting. Nano Res. 2021, 14, 3466–3473.

4

Hou, X. B.; Han, Z. K.; Xu, X. J.; Sarker, D.; Zhou, J.; Wu, M.; Liu, Z. C.; Huang, M. H.; Jiang, H. Q. Controllable amorphization engineering on bimetallic metal-organic frameworks for ultrafast oxygen evolution reaction. Chem. Eng. J. 2021, 418, 129330.

5

Xu, X. J.; Du, P. Y.; Guo, T.; Zhao, B. L.; Wang, H. L.; Huang, M. H. In situ grown Ni phosphate@Ni12P5 nanorod arrays as a unique core–shell architecture: Competitive bifunctional electrocatalysts for urea electrolysis at large current densities. ACS Sustainable Chem. Eng. 2020, 8, 7463–7471.

6

Sun, M. X.; Wang, Y.; Sun, C. S.; Qi. Y.; Cheng, J.; Song, Y. M.; Zhang, L. X. Nitrogen-doped Co3O4 nanowires enable high-efficiency electrochemical oxidation of 5-hydroxymethylfurfural. Chin. Chem. Lett. 2022, 33, 385–389.

7

Du, P. Y.; Zhang, J. J.; Liu, Y. H.; Huang, M. H. Hydrogen generation from catalytic glucose oxidation by Fe-based electrocatalysts. Electrochem. Commun. 2017, 83, 11–15.

8

Yin, Y. J.; Tan, Y.; Wei, Q. Y.; Zhang, S. C.; Wu, S. Q.; Huang, Q.; Hu, F. L.; Mi. Y. Nanovilli electrode boosts hydrogen evolution: A surface with superaerophobicity and superhydrophilicity. Nano Res. 2021, 14, 961–968.

9

Tang, C.; Zhang, R.; Lu, W. B.; Wang, Z.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem. 2017, 129, 860–864.

10

Liu, Z.; Zhang, C. Z.; Liu, H.; Feng, L. G. Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis. Appl. Catal. B: Environ. 2020, 276, 119165.

11

Xu, X. J.; Guo, T.; Xia, J. Y.; Zhao, B. L.; Su, G.; Wang, H. L.; Huang, M. H.; Toghan, A. Modulation of the crystalline/amorphous interface engineering on Ni-P-O-based catalysts for boosting urea electrolysis at large current densities. Chem. Eng. J. 2021, 425, 130514.

12

Zhu, X. Q.; Zhang, X. Y.; Huang, B. L.; Li, J.; Wang, E. K. An interfacial electron transfer relay center for accelerating the hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 18304–18310.

13

Luo, M. C.; Qin, Y. N.; Li, M. G.; Sun, Y. J.; Li, C. J.; Li, Y. J.; Yang, Y.; Lv, F.; Wu, D.; Zhou, P. et al. Interface modulation of twinned PtFe nanoplates branched 3D architecture for oxygen reduction catalysis. Sci. Bull. 2020, 65, 97–104.

14

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

15

Ma X.; Zhang X. Y.; Yang M.; Xie J. Y.; Lv R. Q.; Chai Y. M.; Dong B. High-pressure microwave-assisted synthesis of WSx/Ni9S8/NF hetero-catalyst for efficient oxygen evolution reaction. Rare Met. 2021, 40, 1048–1055.

16

Lou, Z. R.; Li, Y. G.; Zhu, L. P.; Xie, W. Y.; Niu, W. Z.; Song, H.; Ye, Z. Z.; Zhang, S. B. The crystalline/amorphous contact in Cu2O/Ta2O5 heterostructures: Increasing its sunlight-driven overall water splitting efficiency. J. Mater. Chem. A 2017, 5, 2732–2738.

17

Kang, Y. Q.; Jiang, B.; Malgras, V.; Guo, Y. N.; Cretu, O.; Kimoto, K.; Ashok, A.; Wan, Z.; Li, H. X.; Sugahara, Y. et al. Heterostructuring mesoporous 2D iridium nanosheets with amorphous nickel boron oxide layers to improve electrolytic water splitting. Small Methods 2021, 5, 2100679.

18

Shi, P. D.; Zhang, Y.; Zhang, G. L.; Zhu, X. J.; Wang, S. H.; Wang, A. L. A crystalline/amorphous CoP@CoB hierarchical core-shell nanorod array for enhanced hydrogen evolution. J. Mater. Chem. A 2021, 9, 19719–19724.

19

Chen, X. H.; Li, Q.; Che, Q. J.; Chen, Y. S.; Xu, X. Interface engineering of crystalline/amorphous Co2P/CoMoPx nanostructure as efficient electrocatalysts for hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 2437–2445.

20

Yue, Q.; Zhang, Y.; Jiang, Y. J.; Li, J. L.; Zhang, H. W.; Yu, C. Z.; Elzatahry, A. A.; Alghamdi, A.; Deng, Y. H.; Zhao, D. Y. Nanoengineering of core–shell Magnetic mesoporous microspheres with tunable surface roughness. J. Am. Chem. Soc. 2017, 139, 4954–4961.

21
Wang, Y. C.; Liu, Y. Y.; Zhang, M.; Liu, B. Y.; Zhao, Z. Y.; Yan, K. One-step architecture of bifunctional petal-like oxygen-deficient NiAl-LDHs nanosheets for high-performance hybrid supercapacitors and urea oxidation. Sci. China Mater., in press, https://doi.org/10.1007/s40843-021-1978-3.
22

Wang, X. K.; Gai, H. Y.; Chen, Z. K.; Liu, Y. H.; Zhang, J. J.; Zhao, B. L.; Toghan, A.; Huang, M. H. The marriage of crystalline/amorphous Co/Co3O4 heterostructures with N-doped hollow carbon spheres: Efficient and durable catalysts for oxygen reduction. Mater. Today. Energy 2020, 18, 100497.

23

Guo, T.; Xu, X. J.; Wang, X. K.; Zhou, J.; Wang, H. L.; Shi, Z. C.; Huang, M. H. Enabling the full exposure of Fe2P@NixP heterostructures in tree-branch-like nanoarrays for promoted urea electrolysis at high current densities. Chem. Eng. J. 2021, 417, 128067.

24

Gu, X. C.; Liu, Z.; Li, M.; Tian, J. Q.; Feng, L. G. Surface structure regulation and evaluation of FeNi-based nanoparticles for oxygen evolution reaction. Appl. Catal. B: Environ. 2021, 297, 120462.

25

Wang, Z. C.; Zhang, L. X. Nickel ditelluride nanosheet arrays: A highly efficient electrocatalyst for the oxygen evolution reaction. ChemElectroChem 2018, 5, 1153–1158.

26

Ding, W. L.; Cao, Y. H.; Liu, H.; Wang, A. X.; Zhang, C. J.; Zheng, X. R. In situ growth of NiSe@Co0.85Se heterointerface structure with electronic modulation on nickel foam for overall water splitting. Rare Met. 2021, 40, 1373–1382.

27

Lei, C. J.; Wang, Y.; Hou, Y.; Liu, P.; Yang, J.; Zhang, T.; Zhuang, X. D.; Chen, M. W.; Yang, B.; Lei, L. C. et al. Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy Environ. Sci. 2019, 12, 149–156.

28

Yue, Z. H.; Zhu, W. X.; Li, Y. Z.; Wei, Z. Y.; Hu, N.; Suo, Y. R.; Wang, J. L. Surface engineering of a nickel oxide-nickel hybrid nanoarray as a versatile catalyst for both superior water and urea oxidation. Inorg. Chem. 2018, 57, 4693–4698.

29

Yang, W. X.; Zhou, J. H.; Wang, S.; Zhang, W. Y.; Wang, Z. C.; Lv, F.; Wang, K.; Sun, Q.; Guo, S. J. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 2019, 12, 1605–1612.

30

Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

31

Xia, Wei.; Zou, R. Q.; An, L.; Xia, D. G.; Guo, S. J. A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 2015, 8, 568–576.

32

Wang, X. K.; Chen, Z. K.; Han, Z. K.; Gai, H. Y.; Zhou, J.; Wang, Y. R.; Cui, P. X.; Ge, J. J.; Xing, W.; Zheng, X. S. et al. Manipulation of new married edge-adjacent Fe2N5 catalysts and identification of active species for oxygen reduction in wide pH range. Adv. Funct. Mater. 2022, 32, 2111835.

33

Chen, Z.; Zhang, M.; Wang, Y. C.; Yang, Z. Y.; Hu, D.; Tang, Y. T.; Yan, K. Controllable synthesis of nitrogen-doped porous carbon from metal-polluted miscanthus waste boosting for supercapacitors. Green Energy Environ. 2021, 6, 929–937.

34

Liu, Y. H.; Wang, X. K.; Zhao, B. L.; Shao, X.; Huang, M. H. Fe/Fe3C nanoparticles encapsulated in N-doped hollow carbon spheres as efficient electrocatalysts for the oxygen reduction reaction over a wide pH range. Chem. Eur. J. 2019, 25, 9650–9657.

35

Xu, H. B.; Fei, B.; Cai, G. H.; Ha, Y.; Liu, J.; Jia, H. X.; Zhang, J. C.; Liu, M. Wu, R. B. Boronization-induced ultrathin 2D nanosheets with abundant crystalline-amorphous phase boundary supported on nickel foam toward efficient water splitting. Adv. Energy Mater. 2020, 10, 1902714.

36

Chen, J. L.; Qian, G. F.; Zhang, H.; Feng, S. Q.; Mo, Y. S.; Luo, L.; Yin, S. B. PtCo@PtSn heterojunction with high stability/activity for pH-universal H2 evolution. Adv. Funct. Mater. 2022, 32, 2107597.

37

Wang F. L.; Xiao Z. X.; Liu X.; Ren J. W.; Xing T.; Li Z.; Li X. Y.; Chen Y. L. Strategic design of cellulose nanofibers@zeolitic imidazolate frameworks derived mesoporous carbon-supported nanoscale CoFe2O4/CoFe hybrid composition as trifunctional electrocatalyst for Zn-air battery and self-powered overall water-splitting. J. Power Sources 2022, 521, 230925.

38
Raja D. S. Chuah X. F. Lu S. Y. In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities Adv. Energy Mater. 2018 8 1801065 10.1002/aenm.201801065

Raja, D. S.; Chuah, X. F.; Lu, S. Y. In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv. Energy Mater. 2018, 8, 1801065.

39

Xu, Y. X.; Li, B.; Zheng, S. S.; Wu, P.; Zhan, J. Y.; Xue, H. G.; Xu. Q.; Pang, H. Ultrathin two-dimensional cobalt-organic framework nanosheets for high-performance electrocatalytic oxygen evolution. J. Mater. Chem. A 2018, 6, 22070–22076.

40

Zeng, L. Y.; Sun, K. A.; Wang, X. B.; Liu, Y. Q.; Pan, Y.; Liu, Z.; Cao, D. W.; Song, Y.; Liu, S. H.; Liu, C. G. Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity. Nano Energy 2018, 51, 26–36.

41

Liu, D. N.; Liu, T. T.; Zhang, L. X.; Qu, F. L.; Du, G.; Asiri, A. M.; Sun, X. P. High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. J. Mater. Chem. A 2017, 5, 3208–3213.

Nano Research
Pages 7124-7133
Cite this article:
Xu X, Hou X, Du P, et al. Controllable Ni/NiO interface engineering on N-doped carbon spheres for boosted alkaline water-to-hydrogen conversion by urea electrolysis. Nano Research, 2022, 15(8): 7124-7133. https://doi.org/10.1007/s12274-022-4505-1
Topics:

1464

Views

63

Crossref

56

Web of Science

58

Scopus

3

CSCD

Altmetrics

Received: 28 March 2022
Revised: 04 May 2022
Accepted: 05 May 2022
Published: 18 June 2022
© Tsinghua University Press 2022
Return