AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Metal-center effect induced efficient charge transfer of metal-organic framework for strengthening Sb(V) capture performance

Deng You1,2,3Hui Shi2,3Mingming Peng2,3Liming Yang2,3Penghui Shao2,3Kai Yin1Haozhi Wang4Shenglian Luo1( )Xubiao Luo2,3( )
State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, China
Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
Show Author Information

Graphical Abstract

Metal-organic frameworks (MOFs) with different metal centers have been well-designed, and adsorbents constructed by La centers and 1,3-dicarboxymethyl-2-methyl benzimidazole (MGs) (La-MGs) obtain more edge adsorption sites and the optimal charge transfers (–0.9 e), which exhibits d-orbital electrons would alter local coordination environment of activity center and eventually enhance Sb(V) performance.

Abstract

The adsorbents–adsorbates interaction is critical for resourcelization in heavy metal wastewater treatment. Nevertheless, it is still indistinct to depict the impact of metal center effect on heavy metals removal performance in metal-organic frameworks (MOFs)-based adsorbents. Herein, a series of MOFs with different metal centers of Mg(II), La(III), and Zr(IV) are rationally designed, and the effect of electronic structure on the Sb(V) removal performance is systematically investigated. The obtained La-MGs achieve Sb(V) adsorption capacity of 897.6 mg/g, which is about 1.2 and 4.5 times above average than those of Zr-MGs and Mg-MGs, respectively. On account of more edge adsorption sites achieve, the sites utilization efficiency of La-MGs (92.1%) is much better than Zr-MGs (75.0%) and Mg-MGs (20.4%). Furthermore, density functional theory (DFT) calculations reveal that La-MGs are more active than Mg-MGs and Zr-MGs, owing to the lower adsorption energy, higher charge transfer, and stronger bonding interaction, which will promote the Sb(V) removal performance. The experimental results in practical water indicate that La-MGs effectively capture antimony at low concentration, reaching drinking water standard in samples from Ganjiang River. This study opens an avenue for atomic-level insight into high-efficient absorbents design for water treatment from electronic structure-modification of active centers.

Electronic Supplementary Material

Download File(s)
12274_2022_4509_MOESM1_ESM.pdf (12.1 MB)

References

1

Zou, J. P.; Liu H. L., Luo, J. N.; Xing, Q. J.; Du, H. M.; Jiang, X. H.; Luo, X. B.; Luo, S. L.; Suib, S. L. Three-dimensional reduced graphene oxide coupled with Mn3O4 for highly efficient removal of Sb(III) and Sb(V) from water. ACS Appl. Mater. Interfaces 2016, 8, 18140–18149.

2

Yu, S. J.; Tang, H.; Zhang, D.; Wang, S. Q.; Qiu, M. Q.; Song, G.; Fu, D.; Hu, B. W.; Wang, X. K. MXenes as emerging nanomaterials in water purification and environmental remediation. Sci. Total Environ. 2022, 811, 152280.

3

Sheng, X.; Shi, H.; You, D.; Ding, X.; Peng, M. M.; Shao, P. H.; Yang, L. M.; Wang, H. Z.; Luo, X. B.; Luo, S. L. Specific πδ+–πδ– interaction enables conjugated microporous polymers for highly selective capture of Pd(II). Chem. Eng. J. 2022, 437, 135367.

4

Liu, Y. B.; Wu, P.; Liu, F. Q.; Li, F.; An, X. Q.; Liu, J. S.; Wang, Z. W.; Shen, C. S.; Sand, W. Electroactive modified carbon nanotube filter for simultaneous detoxification and sequestration of Sb(III). Environ. Sci. Technol. 2019, 53, 1527–1535.

5

Cao, Y. W.; Guo, Q. H.; Liang, M. S.; Sun, W. H. Sb(III) and Sb(V) removal from water by a hydroxyl-intercalated, mechanochemically synthesized Mg-Fe-LDH. Appl. Clay Sci. 2020, 196, 105766.

6

Qi, P. F.; Luo, R.; Pichler, T.; Zeng, J. Q.; Wang, Y.; Fan, Y. H.; Sui, K. Development of a magnetic core–shell Fe3O4@TA@UiO-66 microsphere for removal of arsenic(III) and antimony(III) from aqueous solution. J. Hazard. Mater. 2019, 378, 120721.

7

Sun, B. H.; Zhang, K.; Ren, Z.; Ni, C. Q.; Hu, H. Q.; Zhang, X. J.; Yang, L. M.; Shao, P. H.; Shi, H.; Yu, K. et al. Insights into the binding manners of an Fe doped MOF-808 in high-performance adsorption: A case of antimony adsorption. Environ. Sci. Nano 2022, 9, 254–264.

8

Feng, X.; Jena, H. S.; Krishnaraj, C.; Arenas-Esteban, D.; Leus, K.; Wang, G. B.; Sun, J. M.; Rüscher, M.; Timoshenko, J.; Cuenya, B. R. et al. Creation of exclusive artificial cluster defects by selective metal removal in the (Zn, Zr) mixed-metal UiO-66. J. Am. Chem. Soc. 2021, 143, 21511–21518.

9

Hu, Q.; Xu, L. C.; Fu, K. X.; Zhu, F. C.; Yang, T. Y.; Yang, T.; Luo, J. M.; Wu, M. H.; Yu, D. Y. Ultrastable MOF-based foams for versatile applications. Nano Res. 2022, 15, 2961–2970.

10

Fu, K. X.; Liu, X.; Lv, C. Y.; Luo, J. M.; Sun, M. X.; Luo, S. L.; Crittenden, J. C. Superselective Hg(II) removal from water using a thiol-laced MOF-based sponge monolith: Performance and mechanism. Environ. Sci. Technol. 2022, 56, 2677–2688.

11

Zhang, H. P.; Fan, Y. L.; Krishna, R.; Feng, X. F.; Wang, L.; Luo, F. Robust metal-organic framework with multiple traps for trace Xe/Kr separation. Sci. Bull. 2021, 66, 1073–1079.

12

Feng, H.; Xiong, X. H.; Gong, L.; Zhang, H. P.; Xu, Y.; Feng, X. F.; Luo, F. Rational tuning of thorium-organic frameworks by reticular chemistry for boosting radionuclide sequestration. Nano Res. 2022, 15, 1472–1478.

13

Liu, X. L.; Pang, H. W.; Liu, X. W.; Li, Q.; Zhang, N.; Mao, L.; Qiu, M. Q.; Hu, B. W.; Yang, H.; Wang, X. K. Orderly porous covalent organic frameworks-based materials: Superior adsorbents for pollutants removal from aqueous solutions. Innovation 2021, 2, 100076.

14

Yu, S. J.; Pang, H. W.; Huang, S. Y.; Tang, H.; Wang, S. Q.; Qiu, M. Q.; Chen, Z. S.; Yang, H.; Song, G.; Fu, D. et al. Recent advances in metal-organic framework membranes for water treatment: A review. Sci. Total. Environ. 2021, 800, 149662.

15

Wang, L. L.; Zhang, K.; Luo, J. M.; Ma, J. Y.; Ji, W. X.; Hong, Q. Y.; Xu, H. M.; Huang, W. J.; Yan, N. Q.; Qu, Z. Metastable facet-controlled Cu2WS4 single crystals with enhanced adsorption activity for gaseous elemental mercury. Environ. Sci. Technol. 2021, 55, 5347–5356.

16

Luo, J. M.; Fu, K. X.; Sun, M.; Yin, K.; Wang, D.; Liu, X.; Crittenden, J. C. Phase-mediated heavy metal adsorption from aqueous solutions using two-dimensional layered MoS2. ACS Appl. Mater. Interfaces 2019, 11, 38789–38797.

17

Xiong, C.; Wang, S. X.; Hu, P.; Huang, L. Y.; Xue, C.; Yang, Z. J.; Zhou, X. T.; Wang, Y. Q.; Ji, H. B. Efficient selective removal of Pb(II) by using 6-aminothiouracil-modified Zr-based organic frameworks: From experiments to mechanisms. ACS Appl. Mater. Interfaces 2020, 12, 7162–7178.

18

Assaad, N.; Sabeh, G.; Hmadeh, M. Defect control in Zr-based metal-organic framework nanoparticles for arsenic removal from water. ACS Appl. Nano Mater. 2020, 3, 8997–9008.

19

Li, M. H.; Liu, Y. B.; Li, F.; Shen, C. S.; Kaneti, Y. V.; Yamauchi, Y.; Yuliarto, B.; Chen, B.; Wang, C. C. Defect-rich hierarchical porous UiO-66(Zr) for tunable phosphate removal. Environ. Sci. Technol. 2021, 55, 13209–13218.

20

Stanton, R.; Trivedi, D. J. Influence of defects and linker exchange on removal of phosphate using MOFs with the node structure M6(OH)4(O)4 for M = Hf, Zr, or Ce. Chem. Mater. 2021, 33, 5730–5737.

21

Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

22

Kim, J. H.; Shin, D.; Kim, J.; Lim, J. S.; Paidi, V. K.; Shin, T. J.; Jeong, H. Y.; Lee, K. S.; Kim, H.; Joo, S. H. Reversible ligand exchange in atomically dispersed catalysts for modulating the activity and selectivity of the oxygen reduction reaction. Angew. Chem. , Int. Ed. 2021, 60, 20528–20534.

23

Chen, D. X.; Yang, W. J.; Jiao, L.; Li, L. Y.; Yu, S. H.; Jiang, H. L. Boosting catalysis of Pd nanoparticles in MOFs by pore wall engineering: The roles of electron transfer and adsorption energy. Adv. Mater. 2020, 32, 2000041.

24

Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem. , Int. Ed. 2021, 60, 7607–7611.

25

You, D.; Shi, H.; Yang, L. M.; Shao, P. H.; Luo, X. B.; Yin, K.; Luo, S. L. Tuning the effective utilization of adsorption sites in La-MOFs via a steric hindrance effect towards enhanced As(III) removal. Environ. Sci. Nano 2021, 8, 3387–3394.

26

You, D.; Shi, H.; Yang, L. M.; Shao, P. H.; Yin, K.; Wang, H. Z.; Luo, S. L.; Luo, X. B. Tuning the Sb(V) adsorption performance of La-MOFs via ligand engineering effect: Combined experiments with theoretical calculations. Chem. Eng. J. 2022, 435, 134874.

27

Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

28

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

29

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

30

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

31

Yang, L. N.; Feng, Y. F.; Wang, C. Q.; Fang, D. F.; Yi, G. P.; Gao, Z.; Shao, P. H.; Liu, C. L.; Luo, X. B.; Luo, S. L. Closed-loop regeneration of battery-grade FePO4 from lithium extraction slag of spent Li-ion batteries via phosphoric acid mixture selective leaching. Chem. Eng. J. 2022, 431, 133232.

32

Liu, K.; Zheng, Y. H.; Jia, G.; Yang, M.; Song, Y. H.; Guo, N.; You, H. P. Nano/micro-scaled La(1, 3, 5-BTC)(H2O)6 coordination polymer: Facile morphology-controlled fabrication and color-tunable photoluminescence properties by co-doping Eu3+, Tb3+. J. Solid State Chem. 2010, 183, 2309–2316.

33

Wang, N. Y.; Mundstock, A.; Liu, Y.; Huang, A. S.; Caro, J. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation. Chem. Eng. Sci. 2015, 124, 27–36.

34

Adhikary, A.; Yaghoobnejad Asl, H.; Sandineni, P.; Balijapelly, S.; Mohapatra, S.; Khatua, S.; Konar, S.; Gerasimchuk, N.; Chernatynskiy, A. V.; Choudhury, A. Unusual atmospheric water trapping and water induced reversible restacking of 2D gallium sulfide layers in NaGaS2 formed by supertetrahedral building unit. Chem. Mater. 2020, 32, 5589–5603.

35

Sun, J. Y.; Wen, J. H.; Wu, G. Z.; Zhang, Z.; Chen, X.; Wang, G. C.; Liu, M. Y. Harmonizing the electronic structures on BiOI with active oxygen vacancies toward facet-dependent antibacterial photodynamic therapy. Adv. Funct. Mater. 2020, 30, 2004108.

36

Lu, H. T.; Zhu, Z. L.; Zhang, H.; Zhu, J. Y.; Qiu, Y. L. Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide. Chem. Eng. J. 2015, 276, 365–375.

37

You, D.; Shi, H.; Xi, Y.; Shao, P. H.; Yang, L. M.; Yu, K.; Han, K. K.; Luo, X. B. Simultaneous heavy metals removal via in situ construction of multivariate metal-organic gels in actual wastewater and the reutilization for Sb(V) capture. Chem. Eng. J. 2020, 400, 125359.

38

You, D.; Min, X. Y.; Liu, L. L.; Ren, Z.; Xiao, X.; Pavlostathis, S. G.; Luo, J. M.; Luo, X. B. New insight on the adsorption capacity of metallogels for antimonite and antimonate removal: From experimental to theoretical study. J. Hazard. Mater. 2018, 346, 218–225.

39

Wang, T. N.; Jiao, Y. H.; He, M. C.; Ouyang, W.; Lin, C. Y.; Liu, X. T. Facile co-removal of As(V) and Sb(V) from aqueous solution using Fe-Cu binary oxides: Structural modification and self-driven force field of copper oxides. Sci. Total. Environ. 2022, 803, 150084.

40

Li, Q.; Li, R.; Ma, X. Y.; Sarkar, B.; Sun, X. Y.; Bolan, N. Comparative removal of As(V) and Sb(V) from aqueous solution by sulfide-modified α-FeOOH. Environ. Pollut. 2020, 267, 115658.

41

Wang, L.; Wang, J. Y.; Wang, Z. X.; He, C.; Lyu, W.; Yan, W.; Yang, L. Enhanced antimonate (Sb(V)) removal from aqueous solution by La-doped magnetic biochars. Chem. Eng. J. 2018, 354, 623–632.

42

Luo, J. M.; Luo, X. B.; Crittenden, J.; Qu, J. H.; Bai, Y. H.; Peng, Y.; Li, J. H. Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2). Environ. Sci. Technol. 2015, 49, 11115–11124.

43

Li, J.; Li, X. D.; Hayat, T.; Alsaedi, A.; Chen, C. L. Screening of zirconium-based metal-organic frameworks for efficient simultaneous removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution. ACS Sustainable Chem. Eng. 2017, 5, 11496–11503.

44

Wang, L.; Wang, J. Y.; Wang, Z. X.; Feng, J. T.; Li, S. S.; Yan, W. Synthesis of Ce-doped magnetic biochar for effective Sb(V) removal: Performance and mechanism. Powder Technol. 2019, 345, 501–508.

45

Li, W. L.; Li, F. S.; Yang, H.; Wu, X. J.; Zhang, P. L.; Shan, Y.; Sun, L. C. A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nat. Commun. 2019, 10, 5074.

46

Zhao, T. H.; Tang, Z.; Zhao, X. L.; Zhang, H.; Wang, J. Y.; Wu, F. C.; Giesy, J. P.; Shi, J. Efficient removal of both antimonite (Sb(III)) and antimonate (Sb(V)) from environmental water using titanate nanotubes and nanoparticles. Environ. Sci. Nano 2019, 6, 834–850.

47

Xu, W.; Wang, H. J.; Liu, R. P.; Zhao, X.; Qu, J. H. The mechanism of antimony(III) removal and its reactions on the surfaces of Fe-Mn binary oxide. J. Colloid Interface Sci. 2011, 363, 320–326.

48

Wu, Q. Q.; Xiong, J.; Zhang, Y. L.; Mei, X. L.; Wei, Y. C.; Zhao, Z.; Liu, J.; Li, J. M. Interaction-induced self-assembly of Au@La2O3 core–shell nanoparticles on La2O2CO3 nanorods with enhanced catalytic activity and stability for soot oxidation. ACS Catal. 2019, 9, 3700–3715.

49

Luo, J. M.; Luo, X. B.; Hu, C. Z.; Crittenden, J. C.; Qu, J. H. Zirconia (ZrO2) embedded in carbon nanowires via electrospinning for efficient arsenic removal from water combined with DFT studies. ACS Appl. Mater. Interfaces 2016, 8, 18912–18921.

50

Taleb, K.; Markovski, J.; Veličković, Z.; Rusmirović, J.; Rančić, M.; Pavlović, V.; Marinković, A. Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: Effect of functionalization and media size. Arabian J. Chem. 2019, 12, 4675–4693.

51

Zhou, J.; Han, Z. K.; Wang, X. K.; Gai, H. Y.; Chen, Z. K.; Guo, T.; Hou, X. B.; Xu, L. L.; Hu, X. J.; Huang, M. H. et al. Discovery of quantitative electronic structure—OER activity relationship in metal-organic framework electrocatalysts using an integrated theoretical-experimental approach. Adv. Funct. Mater. 2021, 31, 2102066.

52

Yu, H. Y.; Shao, P. H.; Fang, L. L.; Pei, J. J.; Ding, L.; Pavlostathis, S. G.; Luo, X. B. Palladium ion-imprinted polymers with PHEMA polymer brushes: Role of grafting polymerization degree in anti-interference. Chem. Eng. J. 2019, 359, 176–185.

53

Yao, Z. W.; Shao, P. H.; Fang, D. F.; Shao, J. C.; Li, D. W.; Liu, L. L.; Huang, Y.; Yu, Z.; Yang, L. M.; Yu, K. et al. Thiol-rich, porous carbon for the efficient capture of silver: Understanding the relationship between the surface groups and transformation pathways of silver. Chem. Eng. J. 2022, 427, 131470.

54

Li, M. Q.; Shang, H.; Li, H.; Hong, Y. F.; Ling, C. C.; Wei, K.; Zhou, B.; Mao, C. L.; Ai, Z. H.; Zhang, L. Z. Kirkendall effect boosts phosphorylated nZVI for efficient heavy metal wastewater treatment. Angew. Chem. , Int. Ed. 2021, 60, 17115–17122.

55

Lin, Q. X.; Zhan, Q. W.; Li, R.; Liao, S. W.; Ren, J. L.; Peng, F.; Li, L. B. Solvent effect on xylose-to-furfural reaction in biphasic systems: Combined experiments with theoretical calculations. Green Chem. 2021, 23, 8510–8518.

56

Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

57

Yan, L.; Song, J. Y.; Chan, T.; Jing, C. Y. Insights into antimony adsorption on {001} TiO2: XAFS and DFT study. Environ. Sci. Technol. 2017, 51, 6335–6341.

58

Wang, J. S.; Zhang, Z. F.; Song, H. R.; Zhang, B.; Liu, J.; Shai, X.; Miao, L. Water dissociation kinetic-oriented design of nickel sulfides via tailored dual sites for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 2021, 31, 2008578.

Nano Research
Pages 8516-8523
Cite this article:
You D, Shi H, Peng M, et al. Metal-center effect induced efficient charge transfer of metal-organic framework for strengthening Sb(V) capture performance. Nano Research, 2022, 15(9): 8516-8523. https://doi.org/10.1007/s12274-022-4509-x
Topics:

1193

Views

7

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 20 February 2022
Revised: 14 April 2022
Accepted: 08 May 2022
Published: 06 July 2022
© Tsinghua University Press 2022
Return