AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

All-nanofiber self-powered PTFE/PA66 device for real-time breathing monitor by scalable solution blow spinning technology

Pan Li1,2Yibo Liu1,2Han Zhang1,2Zhiping Hu1,2Luna Jia1,2Dongkui Liu2Lu Yu2Bo Li1,2( )Youwei Yao2( )
School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
Show Author Information

Graphical Abstract

An all-nanofiber self-powered device was fabricated by solution blow spinning method for effective real-time respiratory monitor.

Abstract

All-nanofiber self-powered device was fabricated using simple, low-cost, safe, and scalable solution blow spinning (SBS) technology for real-time respiratory monitor and timely identification of respiratory obstruction clinically. Polytetrafluoroethylene (PTFE) and polyamide-66 (PA66) nanofibers were selected as triboelectric pairs, owing to strong ability to gain electrons of PTFE and supply electrons of PA66. Poly (ethylene oxide) (PEO) was added to regulate spinning solution viscosity and prepare PTFE/PEO nanofibers, and the morphology and diameter distribution of nanofibers were discussed. PTFE nanofiber film was obtained after the decomposition of PEO in PTFE/PEO nanofiber and melt flow of PTFE pellets in a limited region, and possessed a tensile strength of 1.05 MPa and elongation at a break of 288.58%. Later, PTFE/PA66 all-nanofiber self-powered device was constructed containing PA66 nanofibers, and Au deposition film was used as electrodes by magnetron sputtering. The as-obtained device showed robust electrical performance with an open circuit voltage of ~ 110 V at a loading force of 10 N, a short-circuit current of ~ 5 uA at a loading force of 10 N and a frequency of 4 Hz, a maximum power density of 562 mW·m–2, and a current of 3.1 uA at a loading resistance of 30 MΩ. Based on the triboelectric mechanism, the device possessed stable response and effective sensibility for stimuli, was used to monitor human breathing conditions, prevent suffocation, and distinguish slow, normal, and fast breathing, with an output voltage of ~ 0.08 V perceived in one normal respiratory circle.

Electronic Supplementary Material

Video
12274_2022_4514_MOESM2_ESM.mp4
Download File(s)
12274_2022_4514_MOESM1_ESM.pdf (1.1 MB)

References

1

Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.

2

Wang, S. H.; Oh, J. Y.; Xu, J.; Tran, H.; Bao, Z . Skin-inspired electronics: An emerging paradigm. Acc. Chem. Res. 2018, 51, 1033–1045.

3

Shi, X.; Zuo, Y.; Zhai, P.; Shen, J. H.; Yang, Y. Y. W.; Gao, Z.; Liao, M.; Wu, J. X.; Wang, J. W.; Xu, X. J. et al. Large-area display textiles integrated with functional systems. Nature 2021, 591, 240–245.

4

Shen, S.; Xiao, X.; Xiao, X.; Chen, J. Wearable triboelectric nanogenerators for heart rate monitoring. Chem. Commun. 2021, 57, 5871–5879.

5

Nayeem, O. G.; Lee, S.; Jin, H.; Matsuhisa, N.; Jinno, H.; Miyamoto, A.; Yokota, T.; Someya, T. All-nanofiber-based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proc. Natl. Acad. Sci. USA 2020, 117, 7063–7070.

6

Jiang, Y.; Dong, K.; An, J.; Liang, F.; Yi, J.; Peng, X.; Ning, C.; Ye, C. Y.; Wang, Z. L. UV-protective, self-cleaning, and antibacterial nanofiber-based triboelectric nanogenerators for self-powered human motion monitoring. ACS Appl. Mater. Interfaces 2021, 13, 11205–11214.

7

Rana, S. M. S.; Rahman, M. T.; Salauddin, M.; Sharma, S.; Maharjan, P.; Bhatta, T.; Cho, H.; Park, C.; Park, J. Y. Electrospun PVDF-TrFE/MXene nanofiber mat-based triboelectric nanogenerator for smart home appliances. ACS Appl. Mater. Interfaces 2021, 13, 4955–4967.

8

Mi, H. Y.; Jing, X.; Meador, M. A. B.; Guo, H. Q.; Turng, L. S.; Gong, S. Q. Triboelectric nanogenerators made of porous polyamide nanofiber mats and polyimide aerogel film: Output optimization and performance in circuits. ACS Appl. Mater. Interfaces 2018, 10, 30596–30606.

9

Miyamoto, A.; Lee, S.; Cooray, N. F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 2017, 12, 907–913.

10

Wang, C.; Hwang, D.; Yu, Z. B.; Takei, K.; Park, J.; Chen, T.; Ma, B. W.; Javey, A. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899–904.

11

Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463.

12

Kang, J.; Tok, J. B. H.; Bao, Z. Self-healing soft electronics. Nat. Electron. 2019, 2, 144–150.

13

Peng, X.; Dong, K.; Ye, C. Y.; Jiang, Y.; Zhai, S. Y.; Cheng, R. W.; Liu, D.; Gao, X. P.; Wang, J.; Wang, Z. L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, eaba9624.

14

Wang, Y.; Yokota, T.; Someya, T. Electrospun nanofiber-based soft electronics. NPG Asia Mater. 2021, 13, 22.

15

Li, D.; Liu, X.; Li, W.; Lin, Z. H.; Zhu, B.; Li, Z. Z.; Li, J. L.; Li, B.; Fan, S. H.; Xie, J. W. et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 2021, 16, 153–158.

16

Mayos, M.; Peñacoba, P.; Pijoan, A. M. P.; Santiveri, C.; Flor, X.; Juvanteny, J.; Sampol, G.; Lloberes, P.; Aoiz, J. I.; Bayó, J. et al. Coordinated program between primary care and sleep unit for the management of obstructive sleep apnea. npj Prim. Care Respir. Med. 2019, 29, 39.

17

Hill, E. A. Obstructive sleep apnoea/hypopnoea syndrome in adults with down syndrome. Breathe (Sheff) 2016, 12, e91–e96.

18

Dinh, T.; Nguyen, T.; Phan, H. P.; Nguyen, N. T.; Dao, D. V.; Bell, J. Stretchable respiration sensors: Advanced designs and multifunctional platforms for wearable physiological monitoring. Biosens. Bioelectron. 2020, 166, 112460.

19

Li, M.; Zhang, W.; Wang, C. S.; Wang, H. P. Melt processability of polytetrafluoroethylene: Effect of melt treatment on tensile deformation mechanism. J. Appl. Polym. Sci. 2012, 123, 1667–1674.

20

Sun, B.; Long, Y. Z.; Zhang, H. D.; Li, M. M.; Duvail, J. L.; Jiang, X. Y.; Yin, H. L. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog. Polym. Sci. 2014, 39, 862–890.

21

Inagaki, M.; Yang, Y.; Kang, F. Y. Carbon nanofibers prepared via electrospinning. Adv. Mater. 2012, 24, 2547–2566.

22

Li, J. D.; Zhong, Q.; Yao, Y. Y.; Bi, S. H.; Zhou, T.; Guo, X. M.; Wu, M. Q.; Feng, T. T.; Xiang, R. L. Electrochemical performance and thermal stability of the electrospun PTFE nanofiber separator for lithium-ion batteries. J. Appl. Polym. Sci. 2018, 135, 46508.

23

Feng, Y.; Xiong, T. R.; Jiang, S. H.; Liu, S. W.; Hou, H. Q. Mechanical properties and chemical resistance of electrospun polyterafluoroethylene fibres. RSC Adv. 2016, 6, 24250–24256.

24

Medeiros, E. S.; Glenn, G. M.; Klamczynski, A. P.; Orts, W. J.; Mattoso, L. H. C. Solution blow spinning: A new method to produce micro- and nanofibers from polymer solutions. J. Appl. Polym. Sci. 2009, 113, 2322–2330.

25

Daristotle, J. L.; Behrens, A. M.; Sandler, A. D.; Kofinas, P. A review of the fundamental principles and applications of solution blow spinning. ACS Appl. Mater. Interfaces 2016, 8, 34951–34963.

26

Zhang, H.; Wang, R.; Li, P.; Jia, L. N.; Wang, F.; Liu, Y. B.; Wang, H.; Yu, L.; Li, B. One-step, large-scale blow spinning to fabricate ultralight, fibrous sorbents with ultrahigh oil adsorption capacity. ACS Appl. Mater. Interfaces 2021, 13, 6631–6641.

27

Liu, Y. B.; Jia, C.; Zhang, H.; Wang, H. Y.; Li, P.; Jia, L. N.; Wang, F.; Zhu, P. F.; Wang, H.; Yu, L. et al. Free-standing ultrafine nanofiber papers with high PM0.3 mechanical filtration efficiency by scalable blow and electro-blow spinning. ACS Appl. Mater. Interfaces 2021, 13, 34773–34781.

28

Gao, Y.; Zhang, J.; Su, Y.; Wang, H.; Wang, X. X.; Huang, L. P.; Yu, M.; Ramakrishna, S.; Long, Y. Z. Recent progress and challenges in solution blow spinning. Mater. Horiz. 2021, 8, 426–446.

29

Dhanumalayan, E.; Joshi, G. M. Performance properties and applications of polytetrafluoroethylene (PTFE)—A review. Adv. Compos. Hybrid. Mater. 2018, 1, 247–268.

30

Zhao, P. F.; Soin, N.; Prashanthi, K.; Chen, J. K.; Dong, S. R.; Zhou, E. P.; Zhu, Z. G.; Narasimulu, A. A.; Montemagno, C. D.; Yu, L. Y. et al. Emulsion electrospinning of polytetrafluoroethylene (PTFE) nanofibrous membranes for high-performance triboelectric nanogenerators. ACS Appl. Mater. Interfaces 2018, 10, 5880–5891.

31

Wang, Z. L. On the first principle theory of nanogenerators from Maxwell's equations. Nano Energy 2020, 68, 104272.

32

Shao, J. J.; Jiang, T.; Wang, Z. L. Theoretical foundations of triboelectric nanogenerators (TENGs). Sci. China Technol. Sci. 2020, 63, 1087–1109.

Nano Research
Pages 8458-8464
Cite this article:
Li P, Liu Y, Zhang H, et al. All-nanofiber self-powered PTFE/PA66 device for real-time breathing monitor by scalable solution blow spinning technology. Nano Research, 2022, 15(9): 8458-8464. https://doi.org/10.1007/s12274-022-4514-0
Topics:

888

Views

6

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 08 January 2022
Revised: 12 April 2022
Accepted: 29 April 2022
Published: 05 July 2022
© Tsinghua University Press 2022
Return