AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Passively and actively enhanced surface plasmon resonance sensing strategies towards single molecular detection

Boliang Jia1Jiajie Chen1( )Jie Zhou1Youjun Zeng2Ho-Pui Ho3Yonghong Shao1( )
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China
School of Physics & Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
Show Author Information

Graphical Abstract

This review aims to provide a comprehensive summary of existing approaches in enhancing the performance of surface plasmonic resonance (SPR) sensors based on “passive” and “active” methods.

Abstract

Surface plasmonic resonance (SPR) has been a corner stone for approaching single molecular detection due to its high-sensitivity capability and simple detection mechanism, and has brought major advancements in biomedicine and life science technology. Over decades, the successful integration of SPR with versatile techniques has been demonstrated. However, several crucial limitations have hindered this technique for practical applications, such as long detection time and low overall sensitivity. This review aims to provide a comprehensive summary of existing approaches in enhancing the performance of SPR sensors based on “passive” and “active” methods. Firstly, passive enhancement is discussed from a material aspect, including signal amplification tags and modifications of conventional substrates. Then, the focus is on the most popular active enhancement methods including electrokinetic, optical, magnetic, and acoustic manipulations that are summarized with highlights on their advantageous features and ability to concentrate target molecules at the detection sites. Lastly, prospects and future development directions for developing SPR sensing towards a more practical, single molecular detection technique in the next generation are discussed. This review hopes to inspire researchers’ interests in developing SPR-related technology with more innovative and influential ideas.

References

1

Wood, R. W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. London 1902, 18, 269–275.

2
Raether, H. Surface plasmons on gratings. In Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer-Verlag Berlin Heidelberg: Germany, 1988; pp 91–116https://doi.org/10.1007/BFb0048323
3

Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift Für Phys. A Hadrons Nucl. 1968, 216, 398–410.

4

Rothenhäusler, B.; Knoll, W. Surface-plasmon microscopy. Nature 1988, 332, 615–617.

5

Anker, J.; Hall, W.; Lyandres, O.; Shal, N.; Zhao, J.; Duyne, R. Biosensing with plasmonic nanosensors. Nature Mater 2008, 7, 442–453.

6

Dahlin, A. B.; Wittenberg, N. J.; Höök, F.; Oh, S. H. Promises and challenges of nanoplasmonic devices for refractometric biosensing. Nanophotonics 2013, 2, 83–101.

7

Liu, G. S.; Xiong, X.; Hu, S. Q.; Shi, W. C.; Chen, Y. F.; Zhu, W. G.; Zheng, H. D.; Yu, J. H.; Azeman, N. H.; Luo, Y. H. et al. Photonic cavity enhanced high-performance surface plasmon resonance biosensor. Photonics Res. 2020, 8, 448–456.

8

Zhou, J.; Zeng, Y. J.; Wang, X. L.; Wu, C. L.; Cai, Z. W.; Gao, B. Z.; Gu, D. Y.; Shao, Y. H. The capture of antibodies by antibody-binding proteins for ABO blood typing using SPR imaging-based sensing technology. Sensors Actuators B:Chem. 2020, 304, 127391.

9

Lee, J. H.; Cheglakov, Z.; Yi, J.; Cronin, T. M.; Gibson, K. J.; Tian, B. Z.; Weizmann, Y. Plasmonic photothermal gold bipyramid nanoreactors for ultrafast real-time bioassays. J. Am. Chem. Soc. 2017, 139, 8054–8057.

10

Li, X. K.; Soler, M.; Özdemir, C. I.; Belushkin, A.; Yesilköy, F.; Altug, H. Plasmonic nanohole array biosensor for label-free and real-time analysis of live cell secretion. Lab Chip 2017, 17, 2208–2217.

11

Chen, Y. J.; Schoeler, U.; Huang, C. H.; Vollmer, F. Combining whispering-gallery mode optical biosensors with microfluidics for real-time detection of protein secretion from living cells in complex media. Small 2018, 14, 1703705.

12

Zhang, P. F.; Ma, G. Z.; Dong, W.; Wan, Z. J.; Wang, S. P.; Tao, N. J. Plasmonic scattering imaging of single proteins and binding kinetics. Nat. Methods 2020, 17, 1010–1017.

13

Wang, W.; Wang, S. P.; Liu, Q.; Wu, J.; Tao, N. J. Mapping single-cell-substrate interactions by surface plasmon resonance microscopy. Langmuir 2012, 28, 13373–13379.

14

Raphael, M. P.; Christodoulides, J. A.; Delehanty, J. B.; Long, J. P.; Byers, J. M. Quantitative imaging of protein secretions from single cells in real time. Biophys. J. 2013, 105, 602–608.

15

Howe, C. L.; Webb, K. F.; Abayzeed, S. A.; Anderson, D. J.; Denning, C.; Russell, N. A. Surface plasmon resonance imaging of excitable cells. J. Phys. D:Appl. Phys. 2019, 52, 104001.

16

Zeng, Y. J.; Zhou, J.; Wang, X. L.; Cai, Z. W.; Shao, Y. H. Wavelength-scanning surface plasmon resonance microscopy: A novel tool for real time sensing of cell-substrate interactions. Biosens. Bioelectron. 2019, 145, 111717.

17

Pitruzzello, G.; Conteduca, D.; Krauss, T. F. Nanophotonics for bacterial detection and antimicrobial susceptibility testing. Nanophotonics 2020, 9, 4447–4472.

18

Bahadır, E. B.; Sezgintürk, M. K. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Analyt. Biochem. 2015, 478, 107–120.

19

Hill, R. T. Plasmonic biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 152–168.

20

Xu, T. P.; Geng, Z. X. Strategies to improve performances of LSPR biosensing: Structure, materials, and interface modification. Biosens. Bioelectron. 2021, 174, 112850.

21

Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.

22

Homola, J.; Yee, S. S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sensors Actuators B:Chem. 1999, 54, 3–15.

23

Zeng, S. W.; Baillargeat, D.; Ho, H. P.; Yong, K. T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452.

24

Jackman, J. A.; Ferhan, A. R.; Cho, N. J. Nanoplasmonic sensors for biointerfacial science. Chem. Soc. Rev. 2017, 46, 3615–3660.

25

Oh, S. H.; Altug, H. Performance metrics and enabling technologies for nanoplasmonic biosensors. Nat. Commun. 2018, 9, 5263.

26

Tabasi, O.; Falamaki, C. Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors. Anal. Methods 2018, 10, 3906–3925.

27

Garoli, D.; Yamazaki, H.; Maccaferri, N.; Wanunu, M. Plasmonic nanopores for single-molecule detection and manipulation: Toward sequencing applications. Nano Lett. 2019, 19, 7553–7562.

28

Li, C. Y.; Duan, S.; Yi, J.; Wang, C.; Radjenovic, P. M.; Tian, Z. Q.; Li, J. F. Real-time detection of single-molecule reaction by plasmon-enhanced spectroscopy. Sci. Adv. 2020, 6, eaba6012.

29

Zhang, Y. Q.; Min, C. J.; Dou, X. J.; Wang, X. Y.; Urbach, H. P.; Somekh, M. G.; Yuan, X. C. Plasmonic tweezers: For nanoscale optical trapping and beyond. Light:Sci. Appl. 2021, 10, 59.

30

Abbas, A.; Linman, M. J.; Cheng, Q. New trends in instrumental design for surface plasmon resonance-based biosensors. Biosens. Bioelectron. 2011, 26, 1815–1824.

31

Mazzotta, F.; Johnson, T. W.; Dahlin, A. B.; Shaver, J.; Oh, S. H.; Höök, F. Influence of the evanescent field decay length on the sensitivity of plasmonic nanodisks and nanoholes. ACS Photonics 2015, 2, 256–262.

32

Kabashin, A. V.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G. A.; Atkinson, R.; Pollard, R.; Podolskiy, V. A.; Zayats, A. V. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867–871.

33

Law, W. C.; Yong, K. T.; Baev, A.; Prasad, P. N. Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement. ACS Nano 2011, 5, 4858–4864.

34

Wang, D. P.; Loo, J. F. C.; Chen, J. J.; Yam, Y.; Chen, S. C.; He, H.; Kong, S. K.; Ho, H. P. Recent advances in surface plasmon resonance imaging sensors. Sensors 2019, 19, 1266.

35

Hutter, E.; Fendler, J. H. Exploitation of localized surface plasmon resonance. Adv. Mater. 2004, 16, 1685–1706.

36

Cetin, A. E.; Etezadi, D.; Galarreta, B. C.; Busson, M. P.; Eksioglu, Y.; Altug, H. Plasmonic nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing. ACS Photonics 2015, 2, 1167–1174.

37

Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.

38

Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248.

39

Haes, A. J.; Van Duyne, R. P. A unified view of propagating and localized surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2004, 379, 920–930.

40

Otto, A. The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc. 2005, 36, 497–509.

41
Borghei, Y. S. ; Hosseinkhani, S. ; Ganjali, M. R. “Plasmonic Nanomaterials”: An emerging avenue in biomedical and biomedical engineering opportunities. J. Adv. Res. 2021, in press,doi: 10.1016/j.jare.2021.11.006.https://doi.org/10.1016/j.jare.2021.11.006
42

Pan, N.; Maji, T. K.; Bandyopadhyay, S.; Biswas, P.; Chatterjee, A.; Mitra, M.; Chatterjee, A.; Pal, S. K. A combined spectroscopic and theoretical analysis of plasmonic silver nanoparticle sensor towards detailed microscopic understanding of heavy metal Detection. Plasmonics 2022, 17, 223–236.

43

Ou, X. W.; Liu, Y. Q.; Zhang, M. X.; Hua, L.; Zhan, S. S. Plasmonic gold nanostructures for biosensing and bioimaging. Microchim. Acta 2021, 188, 304.

44

Chen, W.; Hu, H. T.; Jiang, W.; Xu, Y. H.; Zhang, S. P.; Xu, H. X. Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications. Chin. Phys. B 2018, 27, 107403.

45

Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669.

46

Liu, H. T.; Lalanne, P. Microscopic theory of the extraordinary optical transmission. Nature 2008, 452, 728–731.

47

Gordon, R.; Sinton, D.; Kavanagh, K. L.; Brolo, A. G. A new generation of sensors based on extraordinary optical transmission. Acc. Chem. Res. 2008, 41, 1049–1057.

48

Singh, P. SPR biosensors: Historical perspectives and current challenges. Sensors Actuators B:Chem. 2016, 229, 110–130.

49

Jonsson, M. P.; Dahlin, A. B.; Feuz, L.; Petronis, S.; Höök, F. Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal. Chem. 2010, 82, 2087–2094.

50

Xiong, K. L.; Emilsson, G.; Dahlin, A. B. Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters. Analyst 2016, 141, 3803–3810.

51

Im, H.; Shao, H. L.; Park, Y. I.; Peterson, V. M.; Castro, C. M.; Weissleder, R.; Lee, H. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 2014, 32, 490–495.

52

Ren, Y. T.; Chen, Q.; He, M. J.; Zhang, X. Z.; Qi, H.; Yan, Y. Y. Plasmonic optical tweezers for particle manipulation: Principles, methods, and applications. ACS Nano 2021, 15, 6105–6128.

53

Ndukaife, J. C.; Xuan, Y.; Nnanna, A. G. A.; Kildishev, A. V.; Shalaev, V. M.; Wereley, S. T.; Boltasseva, A. High-resolution large-ensemble nanoparticle trapping with multifunctional thermoplasmonic nanohole metasurface. ACS Nano 2018, 12, 5376–5384.

54

Barik, A.; Otto, L. M.; Yoo, D.; Jose, J.; Johnson, T. W.; Oh, S. H. Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays. Nano Lett. 2014, 14, 2006–2012.

55

Ertsgaard, C. T.; Wittenberg, N. J.; Klemme, D. J.; Barik, A.; Shih, W. C.; Oh, S. H. Integrated nanogap platform for sub-volt dielectrophoretic trapping and real-time Raman imaging of biological nanoparticles. Nano Lett. 2018, 18, 5946–5953.

56

Chan, G. H.; Zhao, J.; Hicks, E. M.; Schatz, G. C.; Van Duyne, R. P. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 2007, 7, 1947–1952.

57

Knight, M. W.; King, N. S.; Liu, L. F.; Everitt, H. O.; Nordlander, P.; Halas, N. J. Aluminum for plasmonics. ACS Nano 2014, 8, 834–840.

58

Severs, A. H.; Schasfoort, R. B. M. Enhanced surface plasmon resonance inhibition test (ESPRIT) using latex particles. Biosens. Bioelectron. 1993, 8, 365–370.

59

Zhou, J.; Wang, X. L.; Chen, J. J.; Zeng, Y. J.; Gu, D. Y.; Gao, B. Z.; Shao, Y. H. Polymeric microsphere enhanced surface plasmon resonance imaging immunosensor for occult blood monitoring. Sensors Actuators B:Chem. 2022, 350, 130858.

60

Knight, M. W.; Coenen, T.; Yang, Y.; Brenny, B. J. M.; Losurdo, M.; Brown, A. S.; Everitt, H. O.; Polman, A. Gallium plasmonics: Deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles. ACS Nano 2015, 9, 2049–2060.

61

Singh, J.; Rishikesh, Kumar, S.; Soni, R. K. Synthesis of 3D-MoS2 nanoflowers with tunable surface area for the application in photocatalysis and SERS based sensing. J. Alloys Compd. 2020, 849, 156502.

62

Kumar, A.; Choudhary, P.; Kumar, A.; Camargo, P. H. C.; Krishnan, V. Recent advances in plasmonic photocatalysis based on TiO2 and noble metal nanoparticles for energy conversion, environmental remediation, and organic synthesis. Small 2022, 18, 2101638.

63

West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photonics Rev. 2010, 4, 795–808.

64

Zhou, J.; Li, Z. J.; Ying, M.; Liu, M. X.; Wang, X. M.; Wang, X. Y.; Cao, L. W.; Zhang, H.; Xu, G. X. Black phosphorus nanosheets for rapid microRNA detection. Nanoscale 2018, 10, 5060–5064.

65

Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O. M.; Iatì, M. A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. :Condens. Matter 2017, 29, 203002.

66

Jauffred, L.; Samadi, A.; Klingberg, H.; Bendix, P. M.; Oddershede, L. B. Plasmonic heating of nanostructures. Chem. Rev. 2019, 119, 8087–8130.

67

Hall, W. P.; Ngatia, S. N.; Van Duyne, R. P. LSPR biosensor signal enhancement using nanoparticle-antibody conjugates. J. Phys. Chem. C 2011, 115, 1410–1414.

68

Wu, W. W.; Yu, X. L.; Wu, J. L.; Wu, T.; Fan, Y. P.; Chen, W. Q.; Zhao, M.; Wu, H. P.; Li, X. M.; Ding, S. J. Surface plasmon resonance imaging-based biosensor for multiplex and ultrasensitive detection of NSCLC-associated exosomal miRNAs using DNA programmed heterostructure of Au-on-Ag. Biosens. Bioelectron. 2021, 175, 112835.

69

Lee, E. G.; Park, K. M.; Jeong, J. Y.; Lee, S. H.; Baek, J. E.; Lee, H. W.; Jung, J. K.; Chung, B. H. Carbon nanotube-assisted enhancement of surface plasmon resonance signal. Anal. Biochem. 2011, 408, 206–211.

70

Patil, P. O.; Pandey, G. R.; Patil, A. G.; Borse, V. B.; Deshmukh, P. K.; Patil, D. R.; Tade, R. S.; Nangare, S. N.; Khan, Z. G.; Patil, A. M. et al. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review. Biosens. Bioelectron. 2019, 139, 111324.

71

Zhou, J.; Yang, T. Q.; Chen, J. J.; Wang, C.; Zhang, H.; Shao, Y. H. Two-dimensional nanomaterial-based plasmonic sensing applications: Advances and challenges. Coord. Chem. Rev. 2020, 410, 213218.

72

Zhou, J.; Chen, J. J.; Ge, Y. Q.; Shao, Y. H. Two-dimensional nanomaterials for Förster resonance energy transfer-based sensing applications. Nanophotonics 2020, 9, 1855–1875.

73

Qiu, H. W.; Wang, M. Q.; Zhang, L.; Cao, M. H.; Ji, Y. Q.; Kou, S.; Dou, J. J.; Sun, X. Q.; Yang, Z. Wrinkled 2H-phase MoS2 sheet decorated with graphene-microflowers for ultrasensitive molecular sensing by plasmon-free SERS enhancement. Sensors Actuators B:Chem. 2020, 320, 128445.

74

Li, Q. S.; Xiang, D.; Chang, Z. M.; Shi, J. G.; Ma, Y. H.; Cai, L.; Feng, D.; Dong, W. F. Highly sensitive refractive index sensor based on a TiO2 nanowire array. Appl. Opt. 2017, 56, 1930–1934.

75

Omri, M.; Ouerghi, F.; Abdelmalek, F.; Haxha, S. Highly sensitive photonic sensor based on V-shaped channel mediated gold nanowire. IEEE Sens. J. 2020, 20, 8505–8511.

76

Takemura, K.; Adegoke, O.; Takahashi, N.; Kato, T.; Li, T. C.; Kitamoto, N.; Tanaka, T.; Suzuki, T.; Park, E. Y. Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses. Biosens. Bioelectron. 2017, 89, 998–1005.

77

Chen, C.; Wang, J. S. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628.

78

Ni, H. B.; Zhou, Y.; Liu, X.; Ali, H.; Ge, L.; Pan, C.; Chang, J. H.; Wang, T. T.; Liu, Q. Q.; Wang, M. Surface plasmons excited from close-packed nanoring tube arrays produced by nanosphere lithography. Opt. Mater. Express 2018, 8, 3676–3687.

79

Jebelli, A.; Oroojalian, F.; Fathi, F.; Mokhtarzadeh, A.; De La Guardia, M. Recent advances in surface plasmon resonance biosensors for microRNAs detection. Biosens. Bioelectron. 2020, 169, 112599.

80

Hobbs, K.; Cathcart, N.; Kitaev, V. Gold-plated silver nanoparticles engineered for sensitive plasmonic detection amplified by morphological changes. Chem. Commun. 2016, 52, 9785–9788.

81

Qiu, G. Y.; Ng, S. P.; Wu, C. M. L. Bimetallic Au-Ag alloy nanoislands for highly sensitive localized surface plasmon resonance biosensing. Sensors Actuators B:Chem. 2018, 265, 459–467.

82

Zhang, J.; Sun, Y.; Wu, Q.; Gao, Y.; Zhang, H.; Bai, Y.; Song, D. Q. Preparation of graphene oxide-based surface plasmon resonance biosensor with Au bipyramid nanoparticles as sensitivity enhancer. Colloids Surf. B:Biointerfaces 2014, 116, 211–218.

83

Chen, W. Q.; Li, Z. Y.; Cheng, W. Q.; Wu, T.; Li, J.; Li, X. Y.; Liu, L.; Bai, H. J.; Ding, S. J.; Li, X. M. et al. Surface plasmon resonance biosensor for exosome detection based on reformative tyramine signal amplification activated by molecular aptamer beacon. J. Nanobiotechnol. 2021, 19, 450.

84

Belushkin, A.; Yesilkoy, F.; Altug, H. Nanoparticle-enhanced plasmonic biosensor for digital biomarker detection in a microarray. ACS Nano 2018, 12, 4453–4461.

85

Liu, Q. T.; Boyd, B. J. Liposomes in biosensors. Analyst 2013, 138, 391–409.

86

Peceros, K. E.; Xu, X. D.; Bulcock, S. R.; Cortie, M. B. Dipole–dipole plasmon interactions in gold-on-polystyrene composites. J. Phys. Chem. B 2005, 109, 21516–21520.

87

Matsumura, Y.; Enomoto, Y.; Takahashi, M.; Maenosono, S. Metal (Au, Pt) nanoparticle-latex nanocomposites as probes for immunochromatographic test strips with enhanced sensitivity. ACS Appl. Mater. Interfaces 2018, 10, 31977–31987.

88

Zhang, J.; Sun, Y.; Xu, B.; Zhang, H.; Gao, Y.; Zhang, H. Q.; Song, D. Q. A novel surface plasmon resonance biosensor based on graphene oxide decorated with gold nanorod-antibody conjugates for determination of transferrin. Biosens. Bioelectron. 2013, 45, 230–236.

89

Xing, Y. Q.; Han, J.; Wu, X.; Pierce, D. T.; Zhao, J. X. Graphene/gold nanoparticle composites for ultrasensitive and versatile biomarker assay using single-particle inductively-coupled plasma/mass spectrometry. Analyst 2020, 145, 7932–7940.

90

Chiu, N. F.; Chen, C. C.; Yang, C. D.; Kao, Y. S.; Wu, W. R. Enhanced plasmonic biosensors of hybrid gold nanoparticle-graphene oxide-based label-free immunoassay. Nanoscale Res. Lett. 2018, 13, 152.

91

Slavík, R.; Homola, J. Ultrahigh resolution long range surface plasmon-based sensor. Sensors Actuators B:Chem. 2007, 123, 10–12.

92

Ma, K. J.; Liu, L.; Zhang, P. F.; He, Y. H.; Peng, Q. Optimization of angle-pixel resolution for angular plasmonic biosensors. Sensors Actuators B:Chem. 2019, 283, 188–197.

93

He, L. J.; Pagneux, Q.; Larroulet, I.; Serrano, A. Y.; Pesquera, A.; Zurutuza, A.; Mandler, D.; Boukherroub, R.; Szunerits, S. Label-free femtomolar cancer biomarker detection in human serum using graphene-coated surface plasmon resonance chips. Biosens. Bioelectron. 2017, 89, 606–611.

94

Primo, E. N.; Kogan, M. J.; Verdejo, H. E.; Bollo, S.; Rubianes, M. D.; Rivas, G. A. Label-free graphene oxide-based surface plasmon resonance immunosensor for the quantification of Galectin-3, a novel cardiac biomarker. ACS Appl. Mater. Interfaces 2018, 10, 23501–23508.

95

Grigorenko, A. N.; Polini, M.; Novoselov, K. S. Graphene plasmonics. Nat. Photonics 2012, 6, 749–758.

96

Jung, I.; Rhyee, J. S.; Son, J. Y.; Ruoff, R. S.; Rhee, K. Y. Colors of graphene and graphene-oxide multilayers on various substrates. Nanotechnology 2012, 23, 025708.

97

Primo, E. N.; Bollo, S.; Rubianes, M. D.; Rivas, G. A. Immobilization of graphene-derived materials at gold surfaces: Towards a rational design of protein-based platforms for electrochemical and plasmonic applications. Electrochim. Acta 2018, 259, 723–732.

98

Qiu, G. Y.; Thakur, A.; Xu, C.; Ng, S. P.; Lee, Y.; Wu, C. M. L. Detection of Glioma-derived exosomes with the biotinylated antibody-functionalized titanium nitride plasmonic biosensor. Adv. Funct. Mater. 2019, 29, 1806761.

99

Wang, X. J.; Ma, X. D.; Shi, E. Z.; Lu, P.; Dou, L. T.; Zhang, X. H.; Wang, H. Y. Large-scale plasmonic hybrid framework with built-In nanohole array as multifunctional optical sensing platforms. Small 2020, 16, 1906459.

100

Hageneder, S.; Fossati, S.; Ferrer, N. G.; Güngörmez, B.; Auer, S. K.; Dostalek, J. Multi-diffractive grating for surface plasmon biosensors with direct back-side excitation. Opt. Express 2020, 28, 39770–39780.

101

Kedem, O.; Tesler, A. B.; Vaskevich, A.; Rubinstein, I. Sensitivity and optimization of localized surface plasmon resonance transducers. ACS Nano 2011, 5, 748–760.

102

Bellapadrona, G.; Tesler, A. B.; Grünstein, D.; Hossain, L. H.; Kikkeri, R.; Seeberger, P. H.; Vaskevich, A.; Rubinstein, I. Optimization of localized surface plasmon resonance transducers for studying carbohydrate-protein interactions. Anal. Chem. 2012, 84, 232–240.

103

Chung, T.; Lee, S. Y.; Song, E. Y.; Chun, H.; Lee, B. Plasmonic nanostructures for nano-scale bio-sensing. Sensors 2011, 11, 10907–10929.

104

Martinsson, E.; Otte, M. A.; Shahjamali, M. M.; Sepulveda, B.; Aili, D. Substrate effect on the refractive index sensitivity of silver nanoparticles. J. Phys. Chem. C 2014, 118, 24680–24687.

105

Knight, M. W.; Wu, Y. P.; Lassiter, J. B.; Nordlander, P.; Halas, N. J. Substrates matter: Influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano Lett. 2009, 9, 2188–2192.

106

Kubo, W.; Fujikawa, S. Au double nanopillars with nanogap for plasmonic sensor. Nano Lett. 2011, 11, 8–15.

107

Çetin, A. E.; Yanik, A. A.; Yilmaz, C.; Somu, S.; Busnaina, A.; Altug, H. Monopole antenna arrays for optical trapping, spectroscopy, and sensing. Appl. Phys. Lett. 2011, 98, 111110.

108

Otte, M. A.; Estévez, M. C.; Carrascosa, L. G.; González-Guerrero, A. B.; Lechuga, L. M.; Sepúlveda, B. Improved biosensing capability with novel suspended nanodisks. J. Phys. Chem. C 2011, 115, 5344–5351.

109

Feuz, L.; Jonsson, M. P.; Höök, F. Material-selective surface chemistry for nanoplasmonic sensors: Optimizing sensitivity and controlling binding to local hot spots. Nano Lett. 2012, 12, 873–879.

110

Guerreiro, J. R. L.; Bochenkov, V. E.; Runager, K.; Aslan, H.; Dong, M. D.; Enghild, J. J.; De Freitas, V.; Sales, M. G. F.; Sutherland, D. S. Molecular imprinting of complex matrices at localized surface plasmon resonance biosensors for screening of global interactions of polyphenols and proteins. ACS Sens. 2016, 1, 258–264.

111

Lin, K. Q.; Yi, J.; Hu, S.; Liu, B. J.; Liu, J. Y.; Wang, X.; Ren, B. Size effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy. J. Phys. Chem. C 2016, 120, 20806–20813.

112

Wang, J. Q.; Wu, Y. N.; Fan, C. Z.; Liang, E. J.; Li, Y.; Ding, P. Unmodified hot spot in hybridized nanorod dimer for extended surface-enhanced Raman scattering. J. Phys. Chem. Solids 2020, 136, 109125.

113

Liang, C.; Luan, J. Y.; Wang, Z. Y.; Jiang, Q. S.; Gupta, R.; Cao, S. S.; Liu, K. K.; Morrissey, J. J.; Kharasch, E. D.; Naik, R. R. et al. Gold nanorod size-dependent fluorescence enhancement for ultrasensitive fluoroimmunoassays. ACS Appl. Mater. Interfaces 2021, 13, 11414–11423.

114

Mu, H. W.; Lv, J. W.; Liu, C.; Sun, T.; Chu, P. K.; Zhang, J. P. Localized surface plasmon resonance properties of Ag nanorod arrays on graphene-coated Au substrate. Opt. Commun. 2017, 402, 216–220.

115

Mei, Z.; Tang, L. Surface-plasmon-coupled fluorescence enhancement based on ordered gold nanorod array biochip for ultrasensitive DNA analysis. Anal. Chem. 2017, 89, 633–639.

116

Chan, G. H.; Zhao, J.; Schatz, G. C.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J. Phys. Chem. C 2008, 112, 13958–13963.

117

Smith, K. W.; Yang, J.; Hernandez, T.; Swearer, D. F.; Scarabelli, L.; Zhang, H.; Zhao, H. Q.; Moringo, N. A.; Chang, W. S.; Liz-Marzán, L. M. et al. Environmental symmetry breaking promotes plasmon mode splitting in gold nanotriangles. J. Phys. Chem. C 2018, 122, 13259–13266.

118

Nien, L. W.; Lin, S. C.; Chao, B. K.; Chen, M. J.; Li, J. H.; Hsueh, C. H. Giant electric field enhancement and localized surface plasmon resonance by optimizing contour bowtie nanoantennas. J. Phys. Chem. C 2013, 117, 25004–25011.

119

Kaniber, M.; Schraml, K.; Regler, A.; Bartl, J.; Glashagen, G.; Flassig, F.; Wierzbowski, J.; Finley, J. J. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method. Sci. Rep. 2016, 6, 23203.

120

Park, Y. I.; Im, H.; Weissleder, R.; Lee, H. Nanostar clustering improves the sensitivity of plasmonic assays. Bioconjugate Chem. 2015, 26, 1470–1474.

121

Song, H.; Zhang, H. X.; Sun, Z.; Ren, Z. Y.; Yang, X. Y.; Wang, Q. Triangular silver nanoparticle U-bent fiber sensor based on localized surface plasmon resonance. AIP Adv. 2019, 9, 085307.

122

Zhao, X. H.; Wong, M. M. K.; Chiu, S. K.; Pang, S. W. Effects of three-layered nanodisk size on cell detection sensitivity of plasmon resonance biosensors. Biosens. Bioelectron. 2015, 74, 799–807.

123

Lindquist, N. C.; Lesuffleur, A.; Im, H.; Oh, S. H. Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation. Lab Chip 2009, 9, 382–387.

124

Cetin, A. E.; Topkaya, S. N.; Yalcin-Ozuysal, O.; Khademhosseini, A. Refractive index sensing for measuring single cell growth. ACS Nano 2021, 15, 10710–10721.

125

Luo, X. J.; Zhu, J. T.; Jia, W. Y.; Fang, N. N.; Wu, P.; Cai, C. X.; Zhu, J. J. Boosting long-range surface-enhanced Raman scattering on plasmonic nanohole arrays for ultrasensitive detection of miRNA. ACS Appl. Mater. Interfaces 2021, 13, 18301–18313.

126

Junesch, J.; Emilsson, G.; Xiong, K. L.; Kumar, S.; Sannomiya, T.; Pace, H.; Vörös, J.; Oh, S. H.; Bally, M.; Dahlin, A. B. Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature. Nanoscale 2015, 7, 15080–15085.

127

Ferhan, A. R.; Jackman, J. A.; Malekian, B.; Xiong, K. L.; Emilsson, G.; Park, S.; Dahlin, A. B.; Cho, N. J. Nanoplasmonic sensing architectures for decoding membrane curvature-dependent biomacromolecular interactions. Anal. Chem. 2018, 90, 7458–7466.

128

Atighilorestani, M.; Brolo, A. G. Comparing the electrochemical response of nanostructured electrode arrays. Anal. Chem. 2017, 89, 6129–6135.

129

Lazar, J.; Rosencrantz, R. R.; Elling, L.; Schnakenberg, U. Simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance in a microfluidic chip: New insights into the spatial origin of the signal. Anal. Chem. 2016, 88, 9590–9596.

130

Lynn, N. S. Jr. ; Homola, J. (Bio)sensing using nanoparticle arrays:On the effect of analyte transport on sensitivity. Anal. Chem. 2016, 88, 12145–12151.

131

Green, N. G.; Ramos, A.; Morgan, H. Ac electrokinetics: A survey of sub-micrometre particle dynamics. J. Phys. D:Appl. Phys. 2000, 33, 632–641.

132

Bazant, M. Z.; Kilic, M. S.; Storey, B. D.; Ajdari, A. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv. Colloid Interface Sci. 2009, 152, 48–88.

133

Morani, M.; Mai, T. D.; Krupova, Z.; Van Niel, G.; Defrenaix, P.; Taverna, M. Recent electrokinetic strategies for isolation, enrichment and separation of extracellular vesicles. TrAC-Trends Anal. Chem. 2021, 135, 116179.

134

Cavallaro, S.; Hååg, P.; Sahu, S. S.; Berisha, L.; Kaminskyy, V. O.; Ekman, S.; Lewensohn, R.; Linnros, J.; Viktorsson, K.; Dev, A. Multiplexed electrokinetic sensor for detection and therapy monitoring of extracellular vesicles from liquid biopsies of non-small-cell lung cancer patients. Biosens. Bioelectron. 2021, 193, 113568.

135

Sahu, S. S.; Stiller, C.; Gomero, E. P.; Nagy, Á.; Karlström, A. E.; Linnros, J.; Dev, A. Electrokinetic sandwich assay and DNA mediated charge amplification for enhanced sensitivity and specificity. Biosens. Bioelectron. 2021, 176, 112917.

136

Green, N. G.; Morgan, H. Dielectrophoretic investigations of sub-micrometre latex spheres. J. Phys. D:Appl. Phys. 1997, 30, 2626–2633.

137

Castellanos, A.; Ramos, A.; González, A.; Green, N. G.; Morgan, H. Electrohydrodynamics and dielectrophoresis in microsystems: Scaling laws. J. Phys. D:Appl. Phys. 2003, 36, 2584–2597.

138

Ramos, A.; Morgan, H.; Green, N. G.; Castellanos, A. Ac electrokinetics: A review of forces in microelectrode structures. J. Phys. D:Appl. Phys. 1998, 31, 2338–2353.

139

Feldman, H. C.; Sigurdson, M.; Meinhart, C. D. AC electrothermal enhancement of heterogeneous assays in microfluidics. Lab Chip 2007, 7, 1553–1559.

140

Gao, J.; Sin, M. L. Y.; Liu, T. T.; Gau, V.; Liao, J. C.; Wong, P. K. Hybrid electrokinetic manipulation in high-conductivity media. Lab Chip 2011, 11, 1770–1775.

141

Sin, M. L. Y.; Gau, V.; Liao, J. C.; Wong, P. K. Electrothermal fluid manipulation of high-conductivity samples for laboratory automation applications. JALA Charlottesv. Va. 2010, 15, 426–432.

142

Ibsen, S. D.; Wright, J.; Lewis, J. M.; Kim, S.; Ko, S. Y.; Ong, J.; Manouchehri, S.; Vyas, A.; Akers, J.; Chen, C. C. et al. Rapid isolation and detection of exosomes and associated biomarkers from plasma. ACS Nano 2017, 11, 6641–6651.

143

Lawi, W.; Wiita, C.; Snyder, S. T.; Wei, F.; Wong, D.; Wong, P. K.; Liao, J. C.; Haake, D.; Gau, V. A microfluidic cartridge system for multiplexed clinical analysis. JALA Charlottesv. Va. 2009, 14, 407–412.

144
Sinton, D. ; Wood, P. ; Escobedo, C. ; Eftekhari, F. ; Ferreira, J. ; Brolo, A. G. ; Gordon, R. Microfluidic and nanofluidic integration of plasmonic substrates for biosensing. In Proceedings of the SPIE 7322, Photonic Microdevices/Microstructures for Sensing, Orlando, 2009, pp 732206.https://doi.org/10.1117/12.818604
145

Lindquist, N. C.; Nagpal, P.; Lesuffleur, A.; Norris, D. J.; Oh, S. H. Three-dimensional plasmonic nanofocusing. Nano Lett. 2010, 10, 1369–1373.

146

Johnson, T. W.; Lapin, Z. J.; Beams, R.; Lindquist, N. C.; Rodrigo, S. G.; Novotny, L.; Oh, S. H. Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids. ACS Nano 2012, 6, 9168–9174.

147

Freedman, K. J.; Crick, C. R.; Albella, P.; Barik, A.; Ivanov, A. P.; Maier, S. A.; Oh, S. H.; Edel, J. B. On-demand surface-and tip-enhanced Raman spectroscopy using dielectrophoretic trapping and nanopore sensing. ACS Photonics 2016, 3, 1036–1044.

148

Shi, L.; Rana, A.; Esfandiari, L. A low voltage nanopipette dielectrophoretic device for rapid entrapment of nanoparticles and exosomes extracted from plasma of healthy donors. Sci. Rep. 2018, 8, 6751.

149

Barik, A.; Zhang, Y.; Grassi, R.; Nadappuram, B. P.; Edel, J. B.; Low, T.; Koester, S. J.; Oh, S. H. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules. Nat. Commun. 2017, 8, 1867.

150

Nadappuram, B. P.; Cadinu, P.; Barik, A.; Ainscough, A. J.; Devine, M. J.; Kang, M.; Gonzalez-Garcia, J.; Kittler, J. T.; Willison, K. R.; Vilar, R. et al. Nanoscale tweezers for single-cell biopsies. Nat. Nanotechnol. 2019, 14, 80–88.

151

Barik, A.; Chen, X. S.; Oh, S. H. Ultralow-power electronic trapping of nanoparticles with sub-10 nm gold nanogap electrodes. Nano Lett. 2016, 16, 6317–6324.

152

Im, H.; Bantz, K. C.; Lindquist, N. C.; Haynes, C. L.; Oh, S. H. Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano Lett. 2010, 10, 2231–2236.

153

Chen, X. S.; Park, H. R.; Pelton, M.; Piao, X. J.; Lindquist, N. C.; Im, H.; Kim, Y. J.; Ahn, J. S.; Ahn, K. J.; Park, N. et al. Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves. Nat. Commun. 2013, 4, 2361.

154

Yoo, D.; Barik, A.; De León-Pérez, F.; Mohr, D. A.; Pelton, M.; Martín-Moreno, L.; Oh, S. H. Plasmonic split-trench resonator for trapping and sensing. ACS Nano 2021, 15, 6669–6677.

155

Tang, L. H.; Nadappuram, B. P.; Cadinu, P.; Zhao, Z. Y.; Xue, L.; Yi, L.; Ren, R.; Wang, J. W.; Ivanov, A. P.; Edel, J. B. Combined quantum tunnelling and dielectrophoretic trapping for molecular analysis at ultra-low analyte concentrations. Nat. Commun. 2021, 12, 913.

156

Cheng, I. F.; Chang, H. C.; Chen, T. Y.; Hu, C. M.; Yang, F. L. Rapid (< 5 min) identification of pathogen in human blood by electrokinetic concentration and surface-enhanced Raman spectroscopy.Sci. Rep. 2013, 3, 2365.

157

Song, Y. J.; Chen, P. Y.; Chung, M. T.; Nidetz, R.; Park, Y.; Liu, Z. H.; McHugh, W.; Cornell, T. T.; Fu, J. P.; Kurabayashi, K. AC electroosmosis-enhanced nanoplasmofluidic detection of ultralow-concentration cytokine. Nano Lett. 2017, 17, 2374–2380.

158

Chen, J. J.; Cong, H. J.; Loo, F. C.; Kang, Z. W.; Tang, M. H.; Zhang, H. X.; Wu, S. Y.; Kong, S. K.; Ho, H. P. Thermal gradient induced tweezers for the manipulation of particles and cells. Sci. Rep. 2016, 6, 35814.

159

Cong, H. J.; Chen, J. J.; Ho, H. P. Trapping, sorting and transferring of micro-particles and live cells using electric current-induced thermal tweezers. Sensors Actuators B:Chem. 2018, 264, 224–233.

160

Chen, J. J.; Loo, J. F. C.; Wang, D. P.; Zhang, Y.; Kong, S. K.; Ho, H. P. Thermal optofluidics: Principles and applications. Adv. Opt. Mater. 2020, 8, 1900829.

161
Bohren, C. F. ; Huffman, D. R. Absorption and Scattering of Light by Small Particles. WILEY-VCH Verlag GmbH & Co. KGaA, 1998.https://doi.org/10.1002/9783527618156
162

Chen, J. J.; Kang, Z. W.; Kong, S. K.; Ho, H. P. Plasmonic random nanostructures on fiber tip for trapping live cells and colloidal particles. Opt. Lett. 2015, 40, 3926–3929.

163

Fränzl, M.; Thalheim, T.; Adler, J.; Huster, D.; Posseckardt, J.; Mertig, M.; Cichos, F. Thermophoretic trap for single amyloid fibril and protein aggregation studies. Nat. Methods 2019, 16, 611–614.

164

Lin, L. H.; Peng, X. L.; Wang, M. S.; Scarabelli, L.; Mao, Z. M.; Liz-Marzán, L. M.; Becker, M. F.; Zheng, Y. B. Light-directed reversible assembly of plasmonic nanoparticles using plasmon-enhanced thermophoresis. ACS Nano 2016, 10, 9659–9668.

165

Roxworthy, B. J.; Bhuiya, A. M.; Vanka, S. P.; Toussaint, K. C. Jr. Understanding and controlling plasmon-induced convection. Nat. Commun. 2014, 5, 3173.

166

Bregulla, A. P.; Würger, A.; Günther, K.; Mertig, M.; Cichos, F. Thermo-osmotic flow in thin films. Phys. Rev. Lett. 2016, 116, 188303.

167

Fränzl, M.; Cichos, F. Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows. Nat. Commun. 2022, 13, 656.

168

Gargiulo, J.; Brick, T.; Violi, I. L.; Herrera, F. C.; Shibanuma, T.; Albella, P.; Requejo, F. G.; Cortés, E.; Maier, S. A.; Stefani, F. D. Understanding and reducing photothermal forces for the fabrication of Au nanoparticle dimers by optical printing. Nano Lett. 2017, 17, 5747–5755.

169

Sasikumar, K.; Liang, Z.; Cahill, D. G.; Keblinski, P. Curvature induced phase stability of an intensely heated liquid. J. Chem. Phys. 2014, 140, 234506.

170

Baffou, G.; Polleux, J.; Rigneault, H.; Monneret, S. Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination. J. Phys. Chem. C 2014, 118, 4890–4898.

171

Kotsifaki, D. G.; Chormaic, S. N. Plasmonic optical tweezers based on nanostructures: Fundamentals, advances and prospects. Nanophotonics 2019, 8, 1227–1245.

172

Bosanac, L.; Aabo, T.; Bendix, P. M.; Oddershede, L. B. Efficient optical trapping and visualization of silver nanoparticles. Nano Lett. 2008, 8, 1486–1491.

173

Melzer, J. E.; McLeod, E. Fundamental limits of optical tweezer nanoparticle manipulation speeds. ACS Nano 2018, 12, 2440–2447.

174

Zhang, W. H.; Huang, L. N.; Santschi, C.; Martin, O. J. F. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett. 2010, 10, 1006–1011.

175

Yoo, D.; Gurunatha, K. L.; Choi, H. K.; Mohr, D. A.; Ertsgaard, C. T.; Gordon, R.; Oh, S. H. Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap. Nano Lett. 2018, 18, 3637–3642.

176

Pang, Y. J.; Gordon, R. Optical trapping of a single protein. Nano Lett. 2012, 12, 402–406.

177

Kim, J. D.; Lee, Y. G. Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications. Biomed. Opt. Express 2014, 5, 2471–2480.

178

Chen, Y. F. Nanofabrication by electron beam lithography and its applications: A review. Microelectron. Eng. 2015, 135, 57–72.

179

Kim, C. S.; Ahn, S. H.; Jang, D. Y. Review: Developments in micro/nanoscale fabrication by focused ion beams. Vacuum 2012, 86, 1014–1035.

180

Saleh, A. A. E.; Dionne, J. A. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures. Nano Lett. 2012, 12, 5581–5586.

181

Xiang, Y. F.; Tang, X.; Fu, Y. N.; Lu, F. Y.; Kuai, Y.; Min, C. J.; Chen, J. X.; Wang, P.; Lakowicz, J. R.; Yuan, X. C. et al. Trapping metallic particles using focused Bloch surface waves. Nanoscale 2020, 12, 1688–1696.

182

Kotsifaki, D. G.; Truong, V. G.; Chormaic, S. N. Fano-resonant, asymmetric, metamaterial-assisted tweezers for single nanoparticle trapping. Nano Lett. 2020, 20, 3388–3395.

183

Conteduca, D.; Brunetti, G.; Pitruzzello, G.; Tragni, F.; Dholakia, K.; Krauss, T. F.; Ciminelli, C. Exploring the limit of multiplexed near-field optical trapping. ACS Photonics 2021, 8, 2060–2066.

184

Du, L. P.; Yuan, G. H.; Tang, D. Y.; Yuan, X. C. Tightly focused radially polarized beam for propagating surface plasmon-assisted gap-mode Raman spectroscopy. Plasmonics 2011, 6, 651–657.

185

Gargiulo, J.; Cerrota, S.; Cortés, E.; Violi, I. L.; Stefani, F. D. Connecting metallic nanoparticles by optical printing. Nano Lett. 2016, 16, 1224–1229.

186

Zhao, Y.; Zhu, Y. W. Graphene-based hybrid films for plasmonic sensing. Nanoscale 2015, 7, 14561–14576.

187

Cai, B. J.; Huang, L.; Zhang, H.; Sun, Z. Y.; Zhang, Z. Y.; Zhang, G. J. Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar MicroRNA detection. Biosens. Bioelectron. 2015, 74, 329–334.

188

Pinapati, P.; Joby, J. P.; Cherukulappurath, S. Graphene oxide based two-dimensional optical tweezers for low power trapping of quantum dots and E. coli bacteria. ACS Appl. Nano Mater. 2020, 3, 5107–5115.

189

Lin, L. H.; Wang, M. S.; Peng, X. L.; Lissek, E. N.; Mao, Z. M.; Scarabelli, L.; Adkins, E.; Coskun, S.; Unalan, H. E.; Korgel, B. A. et al. Opto-thermoelectric nanotweezers. Nat. Photonics 2018, 12, 195–201.

190

Ghosh, S.; Ghosh, A. All optical dynamic nanomanipulation with active colloidal tweezers. Nat. Commun. 2019, 10, 4191.

191

Escobedo, C.; Brolo, A. G.; Gordon, R.; Sinton, D. Optofluidic concentration: Plasmonic nanostructure as concentrator and sensor. Nano Lett. 2012, 12, 1592–1596.

192

Ndukaife, J. C.; Kildishev, A. V.; Nnanna, A. G. A.; Shalaev, V. M.; Wereley, S. T.; Boltasseva, A. Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. Nat. Nanotechnol. 2016, 11, 53–59.

193

Garcia-Guirado, J.; Rica, R. A.; Ortega, J.; Medina, J.; Sanz, V.; Ruiz-Reina, E.; Quidant, R. Overcoming diffusion-limited biosensing by electrothermoplasmonics. ACS Photonics 2018, 5, 3673–3679.

194

Kang, Z. W.; Chen, J. J.; Ho, H. P. Surface-enhanced Raman scattering via entrapment of colloidal plasmonic nanocrystals by laser generated microbubbles on random gold nano-islands. Nanoscale 2016, 8, 10266–10272.

195

Kotnala, A.; Kollipara, P. S.; Li, J. G.; Zheng, Y. B. Overcoming diffusion-limited trapping in nanoaperture tweezers using opto-thermal-induced flow. Nano Lett. 2020, 20, 768–779.

196

Cong, H. J.; Loo, F. C.; Chen, J. J.; Wang, Y. Y.; Kong, S. K.; Ho, H. P. Target trapping and in situ single-cell genetic marker detection with a focused optical beam. Biosens. Bioelectron. 2019, 133, 236–242.

197

Qiu, G. Y.; Gai, Z. B.; Tao, Y. L.; Schmitt, J.; Kullak-Ublick, G. A.; Wang, J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 2020, 14, 5268–5277.

198

Qiu, G. Y.; Gai, Z. B.; Saleh, L.; Tang, J. K.; Gui, T.; Kullak-Ublick, G. A.; Wang, J. Thermoplasmonic-assisted cyclic cleavage amplification for self-validating plasmonic detection of SARS-CoV-2. ACS Nano 2021, 15, 7536–7546.

199

Chen, J. J.; Zeng, Y. J.; Zhou, J.; Wang, X. L.; Jia, B. L.; Miyan, R.; Zhang, T. L.; Sang, W.; Wang, Y.; Qiu, H. X. et al. Optothermophoretic flipping method for biomolecule interaction enhancement. Biosens. Bioelectron. 2022, 204, 114084.

200

Yang, A. H. J.; Moore, S. D.; Schmidt, B. S.; Klug, M.; Lipson, M.; Erickson, D. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 2009, 457, 71–75.

201

Juan, M. L.; Gordon, R.; Pang, Y. J.; Eftekhari, F.; Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys. 2009, 5, 915–919.

202

Pang, Y. J.; Gordon, R. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. Nano Lett. 2011, 11, 3763–3767.

203

Wang, K.; Schonbrun, E.; Steinvurzel, P.; Crozier, K. B. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat. Commun. 2011, 2, 469.

204

Chen, C.; Juan, M. L.; Li, Y.; Maes, G.; Borghs, G.; Van Dorpe, P.; Quidant, R. Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity. Nano Lett. 2012, 12, 125–132.

205

Tanaka, Y.; Kaneda, S.; Sasaki, K. Nanostructured potential of optical trapping using a plasmonic nanoblock pair. Nano Lett. 2013, 13, 2146–2150.

206

Kotnala, A.; Gordon, R. Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer. Nano Lett. 2014, 14, 853–856.

207

Jensen, R. A.; Huang, I. C.; Chen, O.; Choy, J. T.; Bischof, T. S.; Lončar, M.; Bawendi, M. G. Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures. ACS Photonics 2016, 3, 423–427.

208

Han, X.; Truong, V. G.; Thomas, P. S.; Chormaic, S. N. Sequential trapping of single nanoparticles using a gold plasmonic nanohole array. Photonics Res. 2018, 6, 981–986.

209

Soelberg, S. D.; Stevens, R. C.; Limaye, A. P.; Furlong, C. E. Surface plasmon resonance detection using antibody-linked magnetic nanoparticles for analyte capture, purification, concentration, and signal amplification. Anal. Chem. 2009, 81, 2357–2363.

210

Liu, X.; Hu, Y. X.; Zheng, S.; Liu, Y.; He, Z.; Luo, F. Surface plasmon resonance immunosensor for fast, highly sensitive, and in situ detection of the magnetic nanoparticles-enriched Salmonella enteritidis. Sensors Actuators B:Chem. 2016, 230, 191–198.

211

Üzek, R.; Sari, E.; Merkoçi, A. Optical-based (bio) sensing systems using magnetic nanoparticles. Magnetochemistry 2019, 5, 59.

212

Shipunova, V. O.; Nikitin, M. P.; Belova, M. M.; Deyev, S. M. Label-free methods of multiparametric surface plasmon resonance and MPQ-cytometry for quantitative real-time measurements of targeted magnetic nanoparticles complexation with living cancer cells. Mater. Today Commun. 2021, 29, 102978.

213

Koleoso, M.; Feng, X.; Xue, Y.; Li, Q.; Munshi, T.; Chen, X. Micro/nanoscale magnetic robots for biomedical applications. Mater. Today Bio 2020, 8, 100085.

214

Chen, Y. Y.; Chen, D. X.; Liang, S. Z.; Dai, Y. G.; Bai, X.; Song, B.; Zhang, D. Y.; Chen, H. W.; Feng, L. Recent advances in field-controlled micro-nano manipulations and micro-nano robots. Adv. Intell. Syst. 2022, 4, 2100116.

215

Zou, F.; Wang, X. X.; Qi, F. J.; Koh, K.; Lee, J.; Zhou, H. J.; Chen, H. X. Magneto-plamonic nanoparticles enhanced surface plasmon resonance TB sensor based on recombinant gold binding antibody. Sensors Actuators B:Chem. 2017, 250, 356–363.

216

Li, S.; Wu, Q.; Ma, P. Y.; Zhang, Y.; Song, D. Q.; Wang, X. H.; Sun, Y. A sensitive SPR biosensor based on hollow gold nanospheres and improved sandwich assay with PDA-Ag@Fe3O4/rGO. Talanta 2018, 180, 156–161.

217

Yoo, H.; Shin, J.; Sim, J.; Cho, H.; Hong, S. Reusable surface plasmon resonance biosensor chip for the detection of H1N1 influenza virus. Biosens. Bioelectron. 2020, 168, 112561.

218

Maccaferri, N.; Gregorczyk, K. E.; De Oliveira, T. V. A. G.; Kataja, M.; Van Dijken, S.; Pirzadeh, Z.; Dmitriev, A.; Åkerman, J.; Knez, M.; Vavassori, P. Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nat. Commun. 2015, 6, 6150.

219

Ignatyeva, D. O.; Knyazev, G. A.; Kapralov, P. O.; Dietler, G.; Sekatskii, S. K.; Belotelov, V. I. Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications. Sci. Rep. 2016, 6, 28077.

220

Gabbani, A.; Petrucci, G.; Pineider, F. Magneto-optical methods for magnetoplasmonics in noble metal nanostructures. J. Appl. Phys. 2021, 129, 211101.

221

Bi, Y.; Huang, L. L.; Li, X. W.; Wang, Y. T. Magnetically controllable metasurface and its application. Front. Optoelectron. 2021, 14, 154–169.

222

Rizal, C.; Manera, M. G.; Ignatyeva, D. O.; Mejía-Salazar, J. R.; Rella, R.; Belotelov, V. I.; Pineider, F.; Maccaferri, N. Magnetophotonics for sensing and magnetometry toward industrial applications. J. Appl. Phys. 2021, 130, 230901.

223

Kaihara, T.; Shimodaira, T.; Suzuki, S.; Cebollada, A.; Armelles, G.; Shimizu, H. Fe thicknesses dependence of attenuated total reflection response in magnetoplasmonic double dielectric structures: Angular versus wavelength interrogation. Jpn. J. Appl. Phys. 2019, 58, 122003.

224

Borovkova, O. V.; Ignatyeva, D. O.; Sekatskii, S. K.; Karabchevsky, A.; Belotelov, V. I. High-Q surface electromagnetic wave resonance excitation in magnetophotonic crystals for supersensitive detection of weak light absorption in the near-infrared. Photonics Res. 2020, 8, 57–64.

225

Uchida, H.; Masuda, Y.; Fujikawa, R.; Baryshev, A. V.; Inoue, M. Large enhancement of Faraday rotation by localized surface plasmon resonance in Au nanoparticles embedded in Bi: YIG film. J. Magn. Magn. Mater. 2009, 321, 843–845.

226

Chen, J. N.; Albella, P.; Pirzadeh, Z.; Alonso-González, P.; Huth, F.; Bonetti, S.; Bonanni, V.; Åkerman, J.; Nogués, J.; Vavassori, P.; Dmitriev, A. et al. Plasmonic nickel nanoantennas. Small 2011, 7, 2341–2347.

227

Feng, H. Y.; Luo, F.; Kekesi, R.; Granados, D.; Meneses-Rodríguez, D.; García, J. M.; García-Martín, A.; Armelles, G.; Cebollada, A. Magnetoplasmonic nanorings as novel architectures with tunable magneto-optical activity in wide wavelength ranges. Adv. Opt. Mater. 2014, 2, 612–617.

228

Maccaferri, N.; Inchausti, X.; García-Martín, A.; Cuevas, J. C.; Tripathy, D.; Adeyeye, A. O.; Vavassori, P. Resonant enhancement of magneto-optical activity induced by surface plasmon polariton modes coupling in 2D magnetoplasmonic crystals. ACS Photonics 2015, 2, 1769–1779.

229

Pourjamal, S.; Kataja, M.; Maccaferri, N.; Vavassori, P.; Van Dijken, S. Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing. Nanophotonics 2018, 7, 905–912.

230

Larson, S.; Zhao, Y. P. Localized surface plasmonic resonance and sensing properties of Ag-MgF2 composite nanotriangles. J. Phys. Chem. C 2018, 122, 7374–7381.

231

Luong, H. M.; Pham, M. T.; Nguyen, T. D.; Zhao, Y. P. Magneto-plasmonic properties of Ag-Co composite nano-triangle arrays. Nanotechnology 2019, 30, 425203.

232

Borovkova, O. V.; Hashim, H.; Kozhaev, M. A.; Dagesyan, S. A.; Chakravarty, A.; Levy, M.; Belotelov, V. I. TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films. Appl. Phys. Lett. 2018, 112, 063101.

233

Luong, H. M.; Pham, M. T.; Nguyen, T. D.; Zhao, Y. P. Enhanced resonant faraday rotation in multilayer magnetoplasmonic nanohole arrays and their sensing application. J. Phys. Chem. C 2019, 123, 28377–28384.

234

López-Ortega, A.; Zapata-Herrera, M.; Maccaferri, N.; Pancaldi, M.; Garcia, M.; Chuvilin, A.; Vavassori, P. Enhanced magnetic modulation of light polarization exploiting hybridization with multipolar dark plasmons in magnetoplasmonic nanocavities. Light:Sci. Appl. 2020, 9, 49.

235

Gabbani, A.; Fantechi, E.; Petrucci, G.; Campo, G.; De Julián Fernández, C.; Ghigna, P.; Sorace, L.; Bonanni, V.; Gurioli, M.; Sangregorio, C. et al. Dielectric effects in FeOx-coated Au nanoparticles boost the magnetoplasmonic response: Implications for active plasmonic devices. ACS Appl. Nano Mater. 2021, 4, 1057–1066.

236

Ozcelik, A.; Rufo, J.; Guo, F.; Gu, Y. Y.; Li, P.; Lata, J.; Huang, T. J. Acoustic tweezers for the life sciences. Nat. Methods 2018, 15, 1021–1028.

237

Fu, Y. Q.; Luo, J. K.; Nguyen, N. T.; Walton, A. J.; Flewitt, A. J.; Zu, X. T.; Li, Y.; McHale, G.; Matthews, A.; Iborra, E. et al. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog. Mater. Sci. 2017, 89, 31–91.

238

Cummer, S. A.; Christensen, J.; Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 2016, 1, 16001.

239

Nair, M. P.; Teo, A. J. T.; Li, K. H. H. Acoustic biosensors and microfluidic devices in the decennium: Principles and applications. Micromachines 2022, 13, 24.

240

Shapira, I.; Oswald, M.; Lovecchio, J.; Khalili, H.; Menzin, A.; Whyte, J.; Dos Santos, L.; Liang, S.; Bhuiya, T.; Keogh, M. et al. Circulating biomarkers for detection of ovarian cancer and predicting cancer outcomes. Br. J. Cancer 2014, 110, 976–983.

241

Joyce, D. P.; Kerin, M. J.; Dwyer, R. M. Exosome-encapsulated microRNAs as circulating biomarkers for breast cancer. Int. J. Cancer 2016, 139, 1443–1448.

242

Chen, X.; Ning, Y.; Pan, S. T.; Liu, B. H.; Chang, Y.; Pang, W.; Duan, X. X. Mixing during trapping enabled a continuous-flow microfluidic smartphone immunoassay using acoustic streaming. ACS Sens. 2021, 6, 2386–2394.

243

Collins, D. J.; Morahan, B.; Garcia-Bustos, J.; Doerig, C.; Plebanski, M.; Neild, A. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun. 2015, 6, 8686.

244

Wu, M. X.; Ouyang, Y. S.; Wang, Z. Y.; Zhang, R.; Huang, P. H.; Chen, C. Y.; Li, H.; Li, P.; Quinn, D.; Dao, M. et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc. Natl. Acad. Sci. USA 2017, 114, 10584–10589.

245

Li, P.; Mao, Z. M.; Peng, Z. L.; Zhou, L. L.; Chen, Y. C.; Huang, P. H.; Truica, C. I.; Drabick, J. J.; El-Deiry, W. S.; Dao, M. et al. Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. USA 2015, 112, 4970–4975.

246

Ahmed, D.; Ozcelik, A.; Bojanala, N.; Nama, N.; Upadhyay, A.; Chen, Y. C.; Hanna-Rose, W.; Huang, T. J. Rotational manipulation of single cells and organisms using acoustic waves. Nat. Commun. 2016, 7, 11085.

247

Guo, F.; Mao, Z. M.; Chen, Y. C.; Xie, Z. W.; Lata, J. P.; Li, P.; Ren, L. Q.; Liu, J. Y.; Yang, J.; Dao, M. et al. Three-dimensional manipulation of single cells using surface acoustic waves. Proc. Natl. Acad. Sci. USA 2016, 113, 1522–1527.

248

Liu, R. H.; Lenigk, R.; Druyor-Sanchez, R. L.; Yang, J. N.; Grodzinski, P. Hybridization enhancement using cavitation microstreaming. Anal. Chem. 2003, 75, 1911–1917.

249

Maturos, T.; Pogfay, T.; Rodaree, K.; Chaotheing, S.; Jomphoak, A.; Wisitsoraat, A.; Suwanakitti, N.; Wongsombat, C.; Jaruwongrungsee, K.; Shaw, P. et al. Enhancement of DNA hybridization under acoustic streaming with three-piezoelectric-transducer system. Lab Chip 2012, 12, 133–138.

250

Biala, K.; Sedova, A.; Flechsig, G. U. Sequence and temperature influence on kinetics of DNA strand displacement at gold electrode surfaces. ACS Appl. Mater. Interfaces 2015, 7, 19948–19959.

251

Marmottant, P.; Hilgenfeldt, S. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 2003, 423, 153–156.

252
Läubli, N. F. ; Burri, J. T. ; Marquard, J. ; Vogler, H. ; Mosca, G. ; Vertti-Quintero, N. ; Shamsudhin, N. ; deMello, A. ; Grossniklaus, U. ; Ahmed, D. et al. 3D mechanical characterization of single cells and small organisms using acoustic manipulation and force microscopy.Nat. Commun. 2021, 12, 2583.https://doi.org/10.1038/s41467-021-22718-8
253

Li, J. F.; Shen, C.; Huang, T. J.; Cummer, S. A. Acoustic tweezer with complex boundary-free trapping and transport channel controlled by shadow waveguides. Sci. Adv. 2021, 7, eabi5502.

254

Jeon, H.; Mirgissa, K. A.; Baek, S.; Rhee, K.; Kim, D. Excitation-frequency determination based on electromechanical impedance spectroscopy for a laser-microfabricated cavitation microstreaming micromixer. Sensors Actuators A:Phys. 2021, 326, 112730.

255

Shin, J. H.; Seo, J.; Hong, J.; Chung, S. K. Hybrid optothermal and acoustic manipulations of microbubbles for precise and on-demand handling of micro-objects. Sensors Actuators B:Chem. 2017, 246, 415–420.

256

Zhou, M.; Gao, D.; Yang, Z.; Zhou, C.; Tan, Y.; Wang, W.; Jiang, Y. Y. Streaming-enhanced, chip-based biosensor with acoustically active, biomarker-functionalized micropillars: A case study of thrombin detection. Talanta 2021, 222, 121480.

257

Chen, D. C.; Zhou, Q. X.; Zhu, X. F.; Xu, Z.; Wu, D. J. Focused acoustic vortex by an artificial structure with two sets of discrete Archimedean spiral slits. Appl. Phys. Lett. 2019, 115, 083501.

258

Zeng, Q.; Zhou, X. Y.; Yang, Y. T.; Sun, Y.; Wang, J. A.; Zhai, C. H.; Li, J. H.; Yu, H. Dynamic single-molecule sensing by actively tuning binding kinetics for ultrasensitive biomarker detection. Proc. Natl. Acad. Sci. USA 2022, 119, e2120379119.

259

Ma, G. Z.; Wan, Z. J.; Yang, Y. Z.; Zhang, P. F.; Wang, S. P.; Tao, N. J. Optical imaging of single-protein size, charge, mobility, and binding. Nat. Commun. 2020, 11, 4768.

260

Li, Y. Q.; Xiang, L. M.; Palma, J. L.; Asai, Y.; Tao, N. J. Thermoelectric effect and its dependence on molecular length and sequence in single DNA molecules. Nat. Commun. 2016, 7, 11294.

261

Li, Y. Q.; Buerkle, M.; Li, G. F.; Rostamian, A.; Wang, H.; Wang, Z. X.; Bowler, D. R.; Miyazaki, T.; Xiang, L. M.; Asai, Y. et al. Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport. Nat. Mater. 2019, 18, 357–363.

Nano Research
Pages 8367-8388
Cite this article:
Jia B, Chen J, Zhou J, et al. Passively and actively enhanced surface plasmon resonance sensing strategies towards single molecular detection. Nano Research, 2022, 15(9): 8367-8388. https://doi.org/10.1007/s12274-022-4515-z
Topics:

1309

Views

14

Crossref

17

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 16 February 2022
Revised: 17 April 2022
Accepted: 09 May 2022
Published: 05 July 2022
© Tsinghua University Press 2022
Return