AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synergistic protection of Si anode based on multi-dimensional graphitic carbon skeletons

Qitao Shi1,§Haiming Wang1,§Junhua Zhou1Huy Quang Ta1,2Jiaqi Wang1Xueyu Lian1Klaudia Kurtyka3Barbara Trzebicka3Thomas Gemming4Mark H. Rümmeli1,2,3,4( )
Soochow Institute for Energy and Materials Innovation, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
Institute for Complex Materials, IFW Dresden, 20 Helmholtz Strasse, Dresden 01069, Germany
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze 41-819, Poland
Thomas Gemming - Institute of Environmental Technology, VSB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 70833, Czech Republic

§ Qitao Shi and Haiming Wang contributed equally to this work.

Show Author Information

Graphical Abstract

This work proposes a bottom-up method synthesized hollow graphene shell as an elastic skeleton and employs graphene as an extra armor to synergistically prepare advanced corn-like Si@hollow graphene shell@graphene (Si@GS@G) anode. Improved conductivity and structural stability are harvested attributed to the porous and rigid conductive network.

Abstract

Inspired by the natural corn structure, a Si@hollow graphene shell@graphene (Si@GS@G) anode material was prepared in which silicon nanoparticles were preliminarily anchored onto the surface of an elastic graphene shell and further constrained using graphene sheets. Hollow graphene oxide shells with abundant surficial hydrogen bonds, which were synthesized using a novel bottom-up method, were used as an intermediate material to anchor positively charged silicon nanoparticles via electrostatic attraction and achieve a rational spatial distribution. The inner hollow graphene shell anchorage and outer graphene constraint synergistically constituted a porous and robust conductive corn-like structure. The as-fabricated Si@GS@G anode afforded efficient electron and ion transport pathways and improved structural stability, thereby enhancing Li+ storage capability (505 mAh·g−1 at 10 A·g−1) and extending the lifespan compared to the single hollow graphene shell or graphene sheet-protected Si anode (72% capacity retention after 500 cycles). The improved kinetics of the Si@GS@G anode were investigated using electro impedance spectroscopy, galvanostatic intermittent titration, and pseudocapacitance contribution rate analysis, and the structural evolution was analyzed using ex situ electron microscopy. This study proposes a novel hollow graphene oxide shell as an activated intermediate material for designing a porous electrode structure that facilitates an enhanced electrochemical performance.

Electronic Supplementary Material

Download File(s)
12274_2022_4518_MOESM1_ESM.pdf (1.1 MB)

References

1

Dühnen, S.; Betz, J.; Kolek, M.; Schmuch, R.; Winter, M.; Placke, T. Toward green battery cells: Perspective on materials and technologies. Small Methods 2020, 4, 2000039.

2

Li, H. T.; Li, Y. G.; Zhang, L. Designing principles of advanced sulfur cathodes toward practical lithium-sulfur batteries. SusMat 2022, 2, 34–64.

3

Shao, C. X.; Zhao, Y.; Qu, L. T. Recent advances in highly integrated energy conversion and storage system. SusMat 2022, 2, 142–160.

4

Li, P.; Kim, H.; Myung, S. T.; Sun, Y. K. Diverting exploration of silicon anode into practical way: A review focused on silicon-graphite composite for lithium ion batteries. Energy Storage Mater. 2021, 35, 550–576.

5

Guo, J. P.; Dong, D. Q.; Wang, J.; Liu, D.; Yu, X. Q.; Zheng, Y.; Wen, Z. R.; Lei, W.; Deng, Y. H.; Wang, J. et al. Silicon-based lithium ion battery systems: State-of-the-art from half and full cell viewpoint. Adv. Funct. Mater. 2021, 31, 2102546.

6

Chen, X.; Li, H. X.; Yan, Z. H.; Cheng, F. Y.; Chen, J. Structure design and mechanism analysis of silicon anode for lithium-ion batteries. Sci. China Mater. 2019, 62, 1515–1536.

7

Shi, Q. T.; Zhou, J. H.; Ullah, S.; Yang, X. Q.; Tokarska, K.; Trzebicka, B.; Ta, H. Q.; Rümmeli, M. H. A review of recent developments in Si/C composite materials for Li-ion batteries. Energy Storage Mater. 2021, 34, 735–754.

8

Mao, E. Y.; Wang, W. Y.; Wan, M. T.; Wang, L.; He, X. M.; Sun, Y. M. Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Res. 2020, 13, 1122–1126.

9

Guan, P.; Li, J. J.; Lu, T. G.; Guan, T.; Ma, Z. L.; Peng, Z.; Zhu, X. Y.; Zhang, L. Facile and scalable approach to fabricate granadilla-like porous-structured silicon-based anode for lithium ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 34283–34290.

10

Wu, X. R.; Yu, C. H.; Li, C. C. Carbon-encapsulated gigaporous microsphere as potential Si anode-active material for lithium-ion batteries. Carbon 2020, 160, 255–264.

11

An, W. L.; Gao, B.; Mei, S. X.; Xiang, B.; Fu, J. J.; Wang, L.; Zhang, Q. B.; Chu, P. K.; Huo, K. F. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 2019, 10, 1447.

12

Wang, B. R.; Li, W. W.; Wu, T.; Guo, J.; Wen, Z. Y. Self-template construction of mesoporous silicon submicrocube anode for advanced lithium ion batteries. Energy Storage Mater. 2018, 15, 139–147.

13

Zeng, Y. F.; Huang, Y. D.; Liu, N. T.; Wang, X. C.; Zhang, Y.; Guo, Y.; Wu, H. H.; Chen, H. X.; Tang, X. C.; Zhang, Q. B. N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries. J. Energy Chem. 2021, 54, 727–735.

14

Yang, J. P.; Wang, Y. X.; Chou, S. L.; Zhang, R. Y.; Xu, Y. F.; Fan, J. W.; Zhang, W. X.; Liu, H. K.; Zhao, D. Y.; Dou, S. X. Yolk–shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy 2015, 18, 133–142.

15

Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk–shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315–3321.

16

Hwang, T. H.; Lee, Y. M.; Kong, B. S.; Seo, J. S.; Choi, J. W. Electrospun core–shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 2012, 12, 802–807.

17

Liu, N. T.; Liu, J.; Jia, D. Z.; Huang, Y. D.; Luo, J.; Mamat, X.; Yu, Y.; Dong, Y. M.; Hu, G. Z. Multi-core yolk–shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries. Energy Storage Mater. 2019, 18, 165–173.

18

Hu, L.; Luo, B.; Wu, C. H.; Hu, P. F.; Wang, L. Z.; Zhang, H. J. Yolk–shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes. J. Energy Chem. 2019, 32, 124–130.

19

Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N. A.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.

20

Tian, H.; Tian, H. J.; Yang, W.; Zhang, F.; Yang, W.; Zhang, Q. B.; Wang, Y.; Liu, J.; Silva, S. R. P.; Liu, H. et al. Stable hollow-structured silicon suboxide-based anodes toward high-performance lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2101796.

21

Chen, X. X.; Ge, G. F.; Wang, W. Y.; Zhang, B.; Jiang, J. J.; Yang, X. L.; Li, Y. Z.; Wang, L.; He, X. M.; Sun, Y. M. In situ formation of ionically conductive nanointerphase on Si particles for stable battery anode. Sci. China Chem. 2021, 64, 1417–1425.

22

Dou, F.; Shi, L. Y.; Song, P. A.; Chen, G. R.; An, J.; Liu, H. J.; Zhang, D. S. Design of orderly carbon coatings for SiO anodes promoted by TiO2 toward high performance lithium-ion battery. Chem. Eng. J. 2018, 338, 488–495.

23

Li, Z. H.; Wan, Z. W.; Zeng, X. Q.; Zhang, S. M.; Yan, L. J.; Ji, J. P.; Wang, H. X.; Ma, Q. X.; Liu, T. F.; Lin, Z. et al. A robust network binder via localized linking by small molecules for high-areal-capacity silicon anodes in lithium-ion batteries. Nano Energy 2021, 79, 105430.

24

Jiao, X. X.; Yin, J. Q.; Xu. X. Y.; Wang, J. L.; Liu, Y. Y.; Xiong, S. Z.; Zhang, Q. L.; Song, J. X. Highly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2005699.

25

Zhang, Y. X.; Wu, B. R.; Mu, G.; Ma, C. W.; Mu, D. B.; Wu, F. Recent progress and perspectives on silicon anode: Synthesis and prelithiation for LIBs energy storage. J. Energy Chem. 2022, 64, 615–650.

26

Kim, N.; Chae, S.; Ma, J.; Ko, M.; Cho, J. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nat. Commun. 2017, 8, 812.

27

Guo, J. G.; Zhai, W.; Sun, Q.; Ai, Q.; Li, J.; Cheng, J.; Dai, L. N.; Ci, L. J. Facilely tunable core–shell Si@SiOx nanostructures prepared in aqueous solution for lithium ion battery anode. Electrochim. Acta 2020, 342, 136068.

28

Zhang, M.; Zhang, T. F.; Ma, Y. F.; Chen, Y. S. Latest development of nanostructured Si/C materials for lithium anode studies and applications. Energy Storage Mater. 2016, 4, 1–14.

29

Shi, L. R.; Pang, C. L.; Chen, S. L.; Wang, M. Z.; Wang, K. X.; Tan, Z. J.; Gao, P.; Ren, J. G.; Huang, Y. Y.; Peng, H. L. et al. Vertical graphene growth on SiO microparticles for stable lithium ion battery anodes. Nano Lett. 2017, 17, 3681–3687.

30

Son, I. H.; Park, J. H.; Kwon, S.; Park, S.; Rümmeli, M. H.; Bachmatiuk, A.; Song, H. J.; Ku, J.; Choi, J. W.; Choi, J. M. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 2015, 6, 7393.

31

Lin, G. H.; Wang, H. C.; Zhang, L.; Cheng, Q. J.; Gong, Z. L.; Ostrikov, K. K. Graphene nanowalls conformally coated with amorphous/nanocrystalline Si as high-performance binder-free nanocomposite anode for lithium-ion batteries. J. Power Sources 2019, 437, 226909.

32

Zhou, J.; Jiang, S.; Li, Y.; Pan, Z.; Qian, Y.; Zhao, Y.; Lin, N.; Qian, Y. T. Chemical fixation of CO2 on activated Si: Producing graphitic carbon-stabilized Si particles for Li-storage. Energy Storage Mater. 2020, 31, 36–43.

33

Yan, Y. T.; Xu, Z. X.; Liu, C. C.; Dou, H. L.; Wei, J. J.; Zhao, X. L.; Ma, J. J.; Dong, Q.; Xu, H. S.; He, Y. S. et al. Rational design of the robust Janus shell on silicon anodes for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 17375–17383.

34

Zhou, X. M.; Liu, Y.; Du, C. Y.; Ren, Y.; Xiao, R.; Zuo, P. J.; Yin, G. P.; Ma, Y. L.; Cheng, X. Q.; Gao, Y. Z. Layer-by-layer engineered silicon-based sandwich nanomat as flexible anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 39970–39978.

35

Yun, Q. B.; Qin, X. Y.; Lv, W.; He, Y. B.; Li, B. H.; Kang, F. Y.; Yang, Q. H. “Concrete” inspired construction of a silicon/carbon hybrid electrode for high performance lithium ion battery. Carbon 2015, 93, 59–67.

36

Lu, C.; Sun, Z. T.; Yu, L. H.; Lian, X. Y.; Yi, Y. Y.; Li, J.; Liu, Z. F.; Dou, S. X.; Sun, J. Y. Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium-ion batteries. Adv. Energy Mater. 2020, 10, 2001161.

37

Dai, X.; Wu, J.; Qian, Z. C.; Wang, H. Y.; Jian, J.; Cao, Y. J.; Rummeli, M. H.; Yi, Q. H.; Liu, H. Y.; Zou, G. F. Ultra-smooth glassy graphene thin films for flexible transparent circuits. Sci. Adv. 2016, 2, e1601574.

38

An, Y. L.; Tian, Y.; Wei, H.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Porosity- and graphitization-controlled fabrication of nanoporous Silicon@Carbon for lithium storage and its conjugation with MXene for lithium-metal anode. Adv. Funct. Mater. 2020, 30, 1908721.

39

Xi, Y. B.; Wang, Y. Y.; Yang, D. J.; Zhang, Z. K.; Liu, W. F.; Li, Q.; Qiu, X. Q. K2CO3 activation enhancing the graphitization of porous lignin carbon derived from enzymatic hydrolysis lignin for high performance lithium-ion storage. J. Alloys Compd. 2019, 785, 706–714.

40

Qiao, Z.; Hwang, S.; Li, X.; Wang, C. Y.; Samarakoon, W.; Karakalos, S.; Li, D. G.; Chen, M. J.; He, Y. H.; Wang, M. Y. et al. 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: A balance between graphitization and hierarchical porosity. Energy Environ. Sci. 2019, 12, 2830–2841.

41

Shen, C. F.; Fang, X.; Ge, M. Y.; Zhang, A. Y.; Liu, Y. H.; Ma, Y. Q.; Mecklenburg, M.; Nie, X.; Zhou, C. W. Hierarchical carbon-coated ball-milled silicon: Synthesis and applications in free-standing electrodes and high-voltage full lithium-ion batteries. ACS Nano 2018, 12, 6280–6291.

42

Zhu, X. Q.; Shen, J. L.; Chen, X. F.; Li, Y.; Peng, W. C.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. Enhanced cycling performance of Si-MXene nanohybrids as anode for high performance lithium ion batteries. Chem. Eng. J. 2019, 378, 122212.

43

Schroder, K.; Alvarado, J.; Yersak, T. A.; Li, J. C.; Dudney, N.; Webb, L. J.; Meng, Y. S.; Stevenson, K. J. The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes. Chem. Mater. 2015, 27, 5531–5542.

44

Chen, L. B.; Wang, K.; Xie, X. H.; Xie, J. Y. Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. J. Power Sources 2007, 174, 538–543.

45

Cao, D.; Ren, M. X.; Xiong, J.; Pan, L. M.; Wang, Y.; Ji, X. Z.; Qiu, T.; Yang, J.; Zhang, C. F. J. Self-assembly of hierarchical Ti3C2Tx-CNT/SiNPs resilient films for high performance lithium ion battery electrodes. Electrochim. Acta 2020, 348, 136211.

46

Jeong, M. G.; Du, H. L.; Islam, M.; Lee, J. K.; Sun, Y. K.; Jung, H. G. Self-rearrangement of silicon nanoparticles embedded in MicroCarbon sphere framework for high-energy and long-life lithium-ion batteries. Nano Lett. 2017, 17, 5600–5606.

47

Chen, F. Q.; Han, J. W.; Kong, D. B.; Yuan, Y. F.; Xiao, J.; Wu, S. C.; Tang, D. M.; Deng, Y. Q.; Lv, W.; Lu, J. et al. 1,000 Wh·L−1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes. Natl. Sci. Rev. 2021, 8, nwab012.

48

Jin, Y.; Li, S.; Kushima, A.; Zheng, X. Q.; Sun, Y. M.; Xie, J.; Sun, J.; Xue, W. J.; Zhou, G. M.; Wu, J. et al. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a Coulombic efficiency exceeding 99.9%. Energy Environ. Sci. 2017, 10, 580–592.

49

Ma, Q.; Zhao, Z. Q.; Zhao, Y.; Xie, H. W.; Xing, P. F.; Wang, D. H.; Yin, H. Y. A self-driven alloying/dealloying approach to nanostructuring micro-silicon for high-performance lithium-ion battery anodes. Energy Storage Mater. 2021, 34, 768–777.

50

Pu, X. J.; Zhao, D.; Fu, C. L.; Chen, Z. X.; Cao, S. N.; Wang, C. S.; Cao, Y. L. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew. Chem., Int. Ed. 2021, 133, 21480–21488.

51

Jiang, Y. Q.; Liu, J. P. Definitions of pseudocapacitive materials: A brief review. Energy Environ. Mater. 2019, 2, 30–37.

52

Zhang, Q.; Wang, D. F.; Yang, B. W.; Cui, X.; Li, X. Electrochemical model of lithium-ion battery for wide frequency range applications. Electrochim. Acta 2020, 343, 136094.

53

Zhang, S. P.; Wang, G.; Zhang, Z. L.; Wang, B. B. ; Bai, J. T.; Wang, H. 3D graphene networks encapsulated with ultrathin SnS nanosheets@hollow mesoporous carbon spheres nanocomposite with pseudocapacitance-enhanced lithium and sodium storage kinetics. Small 2019, 15, 1900565.

54

Mathis, T. S.; Kurra, N.; Wang, X. H.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 2019, 9, 1902007.

55

Mao, Z.; Farkhondeh, M.; Pritzker, M.; Fowler, M.; Chen, Z. Dynamics of a blended lithium-ion battery electrode during galvanostatic intermittent titration technique. Electrochim. Acta 2016, 222, 1741–1750.

56

Shen, Z.; Cao, L.; Rahn, C. D.; Wang, C. Y. Least squares galvanostatic intermittent titration technique (LS-GITT) for accurate solid phase diffusivity measurement. J. Electrochem. Soc. 2013, 160, A1842–A1846.

Nano Research
Pages 8146-8155
Cite this article:
Shi Q, Wang H, Zhou J, et al. Synergistic protection of Si anode based on multi-dimensional graphitic carbon skeletons. Nano Research, 2022, 15(9): 8146-8155. https://doi.org/10.1007/s12274-022-4518-9
Topics:

1012

Views

23

Crossref

23

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 18 March 2022
Revised: 25 April 2022
Accepted: 09 May 2022
Published: 22 June 2022
© Tsinghua University Press 2022
Return