AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Pomegranate micro/nano hierarchical plasma structure for superior microwave absorption

Chunyan Ding1,4Tao Wu1( )Xinsen Hu1Chengshuai Shao1Zhipeng Xu1Hui Fu1Songsong Wu1,3( )Guangwu Wen1,3,4Xiaoxiao Huang2( )
School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Shandong Industrial Ceramics Research & Design Institute Co., Ltd., Zibo 255000, China
Shandong Institute of Advanced Ceramic Co., Ltd., Zibo 255000, China
Show Author Information

Graphical Abstract

VSe2−x presents stronger adsorption towards lithium polysulfides due to selenium vacancies and shows the bidirectional catalysis towards the sulfur redox reactions.

Abstract

Inspired by the pomegranate natural artful structure, pomegranate micro/nano hierarchical plasma configuration of Fe/Fe3C@graphitized carbon (FFC/pCL) was constructed based on the green sol-gel method and in-situ chemical vapor deposition (CVD) synthesis protocol. Pomegranate-like FFC/pCL successfully overcame the agglomeration phenomenon of magnetic nanoparticles with each seed of the pomegranate consisting of Fe/Fe3C as cores and graphitized carbon layers as shells. The high-density arrangement of magnetic nanoparticles and the design of pomegranate-like heterostructures lead to enhanced plasmon resonance. Thus, the pomegranate-like FFC/pCL achieved a great electromagnetic wave (EMW) absorbing performance of 6.12 GHz wide band absorption at a low mass adding of only 16.7 wt.%. Such excellent EMW performance can be attributed to its unique pomegranate hierarchical plasma configuration with separated nanoscale iron cores, surface porous texture, and good carbon conductive network. This investigation provides a new paradigm for the development of magnetic/carbon based EMW absorbing materials by taking advantage of pomegranate hierarchical plasma configuration.

Electronic Supplementary Material

Download File(s)
12274_2022_4522_MOESM1_ESM.pdf (1,017 KB)

References

1

Liu, P. B.; Zhang, Y. Q.; Yan, J.; Huang, Y.; Xia, L.; Guang, Z. X. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2019, 368, 285–298.

2

Xie, X. B.; Wang, B. L.; Wang, Y. K.; Ni, C.; Sun, X. Q.; Du, W. Spinel structured MFe2O4 (M = Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review. Chem. Eng. J. 2022, 428, 131160.

3

Zhi, D. D.; Li, T.; Li, J. Z.; Ren, H. S.; Meng, F. B. A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption. Compos. Part B:Eng. 2021, 211, 108642.

4

Zhao, Y.; Hao, L. L.; Zhang, X. D.; Tan, S. J.; Li, H. H.; Zheng, J.; Ji, G. B. A novel strategy in electromagnetic wave absorbing and shielding materials design: Multi-responsive field effect. Small Sci. 2022, 2, 2100077.

5

Zhang, D. Q.; Xiong, Y. F.; Cheng, J. Y.; Chai, J. X.; Liu, T. T.; Ba, X. W.; Ullah, S.; Zheng, G. P.; Yan, M.; Cao, M. S. Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles. Sci. Bull. 2020, 65, 138–146.

6

Guo, L.; An, Q. D.; Xiao, Z. Y.; Zhai, S. R.; Cai, W. J.; Wang, H. S.; Li, Z. C. Constructing stacked structure of S-doped carbon layer-encapsulated MoO2 NPs with dominated dielectric loss for microwave absorption. ACS Sustainable Chem. Eng. 2019, 7, 19546–19555.

7

Mo, Z. C.; Yang, R. L.; Lu, D. W.; Yang, L. L.; Hu, Q. M.; Li, H. B.; Zhu, H.; Tang, Z. K.; Gui, X. C. Lightweight, three-dimensional carbon nanotube@TiO2 sponge with enhanced microwave absorption performance. Carbon 2019, 144, 433–439.

8

Cheng, Y.; Li, Z. Y.; Li, Y.; Dai, S. S.; Ji, G. B.; Zhao, H. Q.; Cao, J. M.; Du, Y. W. Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption. Carbon 2018, 127, 643–652.

9

Chen, C.; Xi, J. B.; Zhou, E. Z.; Peng, L.; Chen, Z. C.; Gao, C. Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 2018, 10, 26.

10

Duan, Y. L.; Xiao, Z. H.; Yan, X. Y.; Gao, Z. F.; Tang, Y. S.; Hou, L. Q.; Li, Q.; Ning, G. Q.; Li, Y. F. Enhanced electromagnetic microwave absorption property of peapod-like MnO@carbon nanowires. ACS Appl. Mater. Interfaces 2018, 10, 40078–40087.

11

Wang, J. Q.; Yu, H. Y.; Yang, Z. T.; Zhang, A. B.; Zhang, Q. Y.; Zhang, B. L. Tubular carbon nanofibers: Synthesis, characterization and applications in microwave absorption. Carbon 2019, 152, 255–266.

12

Yin, P. F.; Zhang, L. M.; Sun, P.; Wu, W. J.; Sun, X. Y.; Feng, X.; Wang, J.; Dai, J. W.; Tang, Y. T. Novel approach to prepare carbon-encapsulated CIPs@FeO composite for efficient absorption of low-frequency microwave. J. Mater. Sci. :Mater. Electron. 2020, 31, 11059–11070.

13

Jian, X.; Tian, W.; Li, J. Y.; Deng, L. J.; Zhou, Z. W.; Zhang, L.; Lu, H. P.; Yin, L. J.; Mahmood, N. High-temperature oxidation-resistant ZrN0.4B0.6/SiC nanohybrid for enhanced microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 15869–15880.

14

Zhang, Z. W.; Cai, Z. H.; Wang, Z. Y.; Peng, Y. L.; Xia, L.; Ma, S. P.; Yin, Z. Z.; Huang, Y. A Review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 2021, 13, 56.

15

Yan, X.; Huang, X. X.; Chen, Y. T.; Liu, Y. H.; Xia, L.; Zhang, T.; Lin, H. Y.; Jia, D. C.; Zhong, B.; Wen, G. W. et al. A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance. Carbon 2021, 174, 662–672.

16

Liu, P. B.; Gao, S.; Wang, Y.; Huang, Y.; He, W. J.; Huang, W. H.; Luo, J. H. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 2020, 381, 122653.

17

Wang, G. H.; Zhao, Y.; Yang, F.; Zhang, Y.; Zhou, M.; Ji, G. B. Multifunctional integrated transparent film for efficient electromagnetic protection. Nano-Micro Lett. 2022, 14, 65.

18

Che, R. C.; Zhi, C. Y.; Liang, C. Y.; Zhou, X. G. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 2006, 88, 033105.

19

Lv, H. P.; Wu, C.; Tang, J.; Du, H. F.; Qin, F. X.; Peng, H. X.; Yan, M. Two-dimensional SnO/SnO2 heterojunctions for electromagnetic wave absorption. Chem. Eng. J. 2021, 411, 128445.

20

Dong, S.; Tang, W. K.; Hu, P. T.; Zhao, X. G.; Zhang, X. H.; Han, J. C.; Hu, P. Achieving excellent electromagnetic wave absorption capabilities by construction of MnO nanorods on porous carbon composites derived from natural wood via a simple route. ACS Sustainable Chem. Eng. 2019, 7, 11795–11805.

21

Hosseini Mohammadabadi, F.; Masoudpanah, S. M.; Alamolhoda, S.; Koohdar, H. R. Electromagnetic microwave absorption properties of high entropy spinel ferrite ((MnNiCuZn)1−xCoxFe2O4)/graphene nanocomposites. J. Mater. Res. Technol. 2021, 14, 1099–1111.

22

Wang, B. L.; Wu, Q.; Fu, Y. G.; Liu, T. A review on carbon/magnetic metal composites for microwave absorption. J. Mater. Sci. Technol. 2021, 86, 91–109.

23

Zhang, X.; Yan, F.; Zhang, S.; Yuan, H. R.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Hollow N-doped carbon polyhedron containing CoNi alloy nanoparticles embedded within few-layer N-doped graphene as high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2018, 10, 24920–24929.

24

Li, C. P.; Ge, Y. Q.; Jiang, X. H.; Sui, J.; Zhang, Z. M.; Yu, L. M. Lightweight three-dimensional Fe3O4/carbon micro-flowers with tunable microwave absorption properties. J. Alloys Compd 2019, 798, 414–423.

25

Lei, L.; Yao, Z. J.; Zhou, J. T.; Zheng, W. J.; Wei, B.; Zu, J. Q.; Yan, K. Y. Hydrangea-like Ni/NiO/C composites derived from metal-organic frameworks with superior microwave absorption. Carbon 2021, 173, 69–79.

26

He, G. H.; Duan, Y. P.; Pang, H. F. Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon. Nano-Micro Lett. 2020, 12, 57.

27

Wang, B. L.; Chen, H. Y.; Wang, S.; Shi, Y.; Liu, X. D.; Fu, Y. G.; Liu, T. Construction of core–shell structured Co7Fe3@C nanocapsules with strong wideband microwave absorption at ultra-thin thickness. Carbon 2021, 184, 223–231.

28

Kim, H.; Park, S.; Kim, S.; Seo, Y. Microwave absorption and shielding property of Fe-Si-Al alloy/MWCNT/polymer nanocomposites. Langmuir 2019, 35, 6950–6955.

29

Liu, L.; He, N.; Wu, T.; Hu, P. B.; Tong, G. X. Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem. Eng. J. 2019, 355, 103–108.

30

Zhu, G. P.; Peng, Z. B.; Hu, Z. Q.; Bian, J.; Ye, W.; Wu, T. T.; Chen, Y. J.; Gao, P. Abundant hot-spot construction between Ni/C nanotubes with enhanced localized surface plasmon resonance for Radar wave absorption. Appl. Surf. Sci. 2020, 504, 144592.

31

Chen, Y.; Munechika, K.; Ginger, D. S. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 2007, 7, 690–696.

32

Yan, X. Y.; Wang, M. L.; Sun, X.; Wang, Y. H.; Shi, G. C.; Ma, W. L.; Hou, P. Sandwich-like Ag@Cu@CW SERS substrate with tunable nanogaps and component based on the plasmonic nanonodule structures for sensitive detection crystal violet and 4-aminothiophenol. Appl. Surf. Sci. 2019, 479, 879–886.

33

Sun, H. B.; Liu, H.; Wu, Y. Y. A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice. Appl. Surf. Sci. 2017, 416, 704–709.

34

Su, K. H.; Wei, Q. H.; Zhang, X.; Mock, J. J.; Smith, D. R.; Schultz, S. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 2003, 3, 1087–1090.

35

Touahir, L.; Niedziól̷ka-Jönsson, J.; Galopin, E.; Boukherroub, R.; Gouget-Laemmel, A. C.; Solomon, I.; Petukhov, M.; Chazalviel, J. N.; Ozanam, F.; Szunerits, S. Surface plasmon resonance on gold and silver films coated with thin layers of amorphous silicon-carbon alloys. Langmuir 2010, 26, 6058–6065.

36

Lockett, M. R.; Weibel, S. C.; Phillips, M. F.; Shortreed, M. R.; Sun, B.; Corn, R. M.; Hamers, R. J.; Cerrina, F.; Smith, L. M. Carbon-on-metal films for surface plasmon resonance detection of DNA arrays. J. Am. Chem. Soc. 2008, 130, 8611–8613.

37

Zhao, H. Q.; Cheng, Y.; Zhang, Z.; Yu, J. W.; Zheng, J.; Zhou, M.; Zhou, L.; Zhang, B. S.; Ji, G. B. Rational design of core–shell Co@C nanotubes towards lightweight and high-efficiency microwave absorption. Compos. Part B:Eng. 2020, 196, 108119.

38

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

39

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

40

Wu, Z. C.; Pei, K.; Xing, L. S.; Yu, X. F.; You, W. B.; Che, R. C. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 2019, 29, 1901448.

41

Liang, X. H.; Quan, B.; Chen, J. B.; Gu, W. H.; Zhang, B. S.; Ji, G. B. Nano bimetallic@carbon layer on porous carbon nanofibers with multiple interfaces for microwave absorption applications. ACS Appl. Nano Mater. 2018, 1, 5712–5721.

42

Green, M.; Chen, X. B. Recent progress of nanomaterials for microwave absorption. J. Mater. 2019, 5, 503–541.

43

Liu, D. W.; Du, Y. C.; Xu, P.; Liu, N.; Wang, Y. H.; Zhao, H. H.; Cui, L. R.; Han, X. J. Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C 2019, 7, 5037–5046.

44

Lan, D.; Qin, M.; Yang, R. S.; Chen, S.; Wu, H. J.; Fan, Y. C.; Fu, Q. H.; Zhang, F. L. Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Interface Sci. 2019, 533, 481–491.

45

Sun, X. X.; Yang, M. L.; Yang, S.; Wang, S. S.; Yin, W. L.; Che, R. C.; Li, Y. B. Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 2019, 15, 1902974.

46

Liu, X. D.; Huang, Y.; Zhang, N.; Zhou, S. H. Synthesis of CoNi/SiO2 core–shell nanoparticles decorated reduced graphene oxide nanosheets for enhanced electromagnetic wave absorption properties. Ceram. Int. 2018, 44, 22189–22197.

47

Shi, X. F.; Liu, Z. W.; You, W. B.; Zhao, X. B.; Che, R. C. Janus-like Fe3O4/PDA vesicles with broadening microwave absorption bandwidth. J. Mater. Chem. C 2018, 6, 7790–7796.

48

Ding, C. Y.; Zhou, W. W.; Wang, X. Y.; Shi, B.; Wang, D.; Zhou, P. Y.; Wen, G. W. Hybrid aerogel-derived carbon/porous reduced graphene oxide dual-functionalized NiO for high-performance lithium storage. Chem. Eng. J. 2018, 332, 479–485.

49

Ma, G. S.; Xia, L.; Yang, H.; Wang, X. Y.; Zhang, T.; Huang, X. X.; Xiong, L.; Qin, C. L.; Wen, G. W. Multifunctional lithium aluminosilicate/CNT composite for gas filtration and electromagnetic wave absorption. Chem. Eng. J. 2021, 418, 129429.

50

Tiwari, D. C.; Dipak, P.; Dwivedi, S. K.; Shami, T. C.; Dwivedi, P. PPy/TiO2(np)/CNT polymer nanocomposite material for microwave absorption. J. Mater. Sci. :Mater. Electron. 2018, 29, 1643–1650.

51

Song, H. Y.; Chen, J. T.; Li, H. G.; Akinay, Y. Preparation of nickel doped mesoporous carbon for enhanced microwave absorption performance. J. Magn. Magn. Mater. 2020, 513, 167071.

52

ur Rehman, S.; Sun, M. Z.; Xu, M. S.; Liu, J.; Ahmed, R.; Aslam, M. A.; Ahmad, R. A.; Bi, H. Carbonized zeolitic imidazolate framework-67/polypyrrole: A magnetic-dielectric interface for enhanced microwave absorption properties. J. Colloid Interface Sci. 2020, 574, 87–96.

53

Zhou, L.; Yu, J. J.; Wang, Z. J.; Wang, H. B.; Huang, J. L.; Mu, W. Y.; Zheng, H. Q. Electromagnetic and microwave absorption properties of FeSiAl and flaky graphite filled Al2O3 composites with different FeSiAl particle size. Ceram. Int. 2020, 46, 4329–4334.

54

Sun, G. B.; Wu, H.; Liao, Q. L.; Zhang, Y. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. Nano Res. 2018, 11, 2689–2704.

55

Yang, J. N.; Guan, G. G.; Yan, L.; Xu, J. H.; Xiang, J.; Zhang, K. Y. FeCo/ZnO composite nanofibers for broadband and high efficiency microwave absorption. Adv. Mater. Interfaces 2021, 8, 2101047.

56

Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; He, X. W.; Su, K. H.; Zhang, Q. Y. Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500–1519.

57

Gu, W. H.; Tan, J. W.; Chen, J. B.; Zhang, Z.; Zhao, Y.; Yu, J. W.; Ji, G. B. Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 28727–28737.

58

Zhao, B.; Li, Y.; Zeng, Q. W.; Wang, L.; Ding, J. J.; Zhang, R.; Che, R. C. Galvanic replacement reaction involving core–shell magnetic chains and orientation-tunable microwave absorption properties. Small 2020, 16, 2003502.

59

Zhang, X. X.; Wang, J.; Su, X. G.; Huo, S. Q. Facile synthesis of reduced graphene oxide-wrapped CNFs with controllable chemical reduction degree for enhanced microwave absorption performance. J. Colloid Interface Sci. 2019, 553, 402–408.

60

Fang, J. W.; Ma, Y.; Zhang, Z. Y.; Yang, B. Z.; Li, Y. S.; Hu, Y. Y.; Yin, Y. H.; Liu, X. B.; Wu, Z. P. Metal-organic framework-derived carbon/carbon nanotubes mediate impedance matching for strong microwave absorption at fairly low temperatures. ACS Appl. Mater. Interfaces 2021, 13, 33496–33504.

61

Wang, F.; Gu, W. H.; Chen, J. B.; Wu, Y.; Zhou, M.; Tang, S. L.; Cao, X. Z.; Zhang, P.; Ji, G. B. The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res. 2022, 15, 3720–3728.

62

Cheng, J.; Cai, L.; Shi, Y. Y.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Jiang, H. J.; Zhang, X.; Xiang, Z.; Lu, W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 134284.

63

Li, T. T.; Xia, L.; Yang, H.; Wang, X. Y.; Zhang, T.; Huang, X. X.; Xiong, L.; Qin, C. L.; Wen, G. W. Construction of a Cu–Sn heterojunction interface derived from a schottky junction in Cu@Sn/rGO composites as a highly efficient dielectric microwave absorber. ACS Appl. Mater. Interfaces 2021, 13, 11911–11919.

64

Cai, L.; Pan, F.; Zhu, X. J.; Dong, Y. Y.; Shi, Y. Y.; Xiang, Z.; Cheng, J.; Jiang, H. J.; Shi, Z.; Lu, W. Etching engineering and electrostatic self-assembly of N-doped MXene/hollow Co-ZIF hybrids for high-performance microwave absorbers. Chem. Eng. J. 2022, 434, 133865.

65

Ding, C. Y.; Wu, S. S.; Zhang, Y.; Wu, Y.; Geng, X.; Huang, X. X.; Wen, G. W.; Wang, A. Y. Sugar blower protocol enabling superior electromagnetic wave absorption of porous micro pipeline carbon materials. J. Mater. Chem. A 2021, 9, 16395–16404.

66

Pan, F.; Cai, L.; Shi, Y. Y.; Dong, Y. Y.; Zhu, X. J.; Cheng, J.; Jiang, H. J.; Wang, X.; Zhong, S.; Lu, W. Phase engineering reinforced multiple loss network in apple tree-like liquid metal/Ni-Ni3P/N-doped carbon fiber composites for high-performance microwave absorption. Chem. Eng. J. 2022, 435, 135009.

67

Wang, F.; Gu, W. H.; Chen, J. B.; Huang, Q. Q.; Han, M. Y.; Wang, G. H.; Ji, G. B. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption. J. Mater. Sci. Technol. 2022, 105, 92–100.

68

Qiu, Y.; Lin, Y.; Yang, H. B.; Wang, L.; Wang, M. Q.; Wen, B. Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123207.

69

Cui, X. Q.; Liang, X. H.; Chen, J. B.; Gu, W. H.; Ji, G. B.; Du, Y. W. Customized unique core–shell Fe2N@N-doped carbon with tunable void space for microwave response. Carbon 2020, 156, 49–57.

70

Wang, F. Y.; Wang, N.; Han, X. J.; Liu, D. W.; Wang, Y. H.; Cui, L. R.; Xu, P.; Du, Y. C. Core–shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 2019, 145, 701–711.

71

Zhang, J. M.; Wang, P.; Chen, Y. W.; Wang, G. W.; Wang, D.; Qiao, L.; Wang, T.; Li, F. S. Microwave absorption properties of Co@C nanofiber composite for normal and oblique incidence. J. Electron. Mater. 2018, 47, 4703–4709.

72

Xie, P. T.; Li, H. Y.; He, B.; Dang, F.; Lin, J.; Fan, R. H.; Hou, C. X.; Liu, H.; Zhang, J. X.; Ma, Y. et al. Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J. Mater. Chem. C 2018, 6, 8812–8822.

73

Ouyang, J.; He, Z. L.; Zhang, Y.; Yang, H. M.; Zhao, Q. H. Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability. ACS Appl. Mater. Interfaces 2019, 11, 39304–39314.

74

Wu, N. N.; Xu, D. M.; Wang, Z.; Wang, F. L.; Liu, J. R.; Liu, W.; Shao, Q.; Liu, H.; Gao, Q.; Guo, Z. H. Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 2019, 145, 433–444.

75

Wang, L. ; Huang, M. Q. ; Yu, X. F. ; You, W. B. ; Zhang, J. ; Liu, X. H. ; Wang, M. ; Che, R. C. MOF-derived Ni1−xCox@carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 2020, 12, 150.

76

Chai, L. ; Wang, Y. Q. ; Zhou, N. F. ; Du, Y. ; Zeng, X. D. ; Zhou, S. Y. ; He, Q. C. ; Wu, G. L. In-situ growth of core–shell ZnFe2O4 @ porous hollow carbon microspheres as an efficient microwave absorber. Colloid Interface Sci. 2020, 581, 475–484.

Nano Research
Pages 8688-8696
Cite this article:
Ding C, Wu T, Hu X, et al. Pomegranate micro/nano hierarchical plasma structure for superior microwave absorption. Nano Research, 2022, 15(10): 8688-8696. https://doi.org/10.1007/s12274-022-4522-0
Topics:

1162

Views

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 26 February 2022
Revised: 09 May 2022
Accepted: 10 May 2022
Published: 02 August 2022
© Tsinghua University Press 2022
Return