Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The development of visible-light-responsive photocatalysts for promoting solar-driven oxygen (O2) production from water splitting is a potentially attractive but still a challenging scheme. In the present work, a (111)-type layered perovskite oxynitride, Sr5Nb4O15−xNx, was synthesized via the nitridation treatment of the disk-like oxide precursor under the ammonia flow, which was fabricated using a flux method. The homogeneous dispersion of nitrogen (N) dopant in N-doped Sr5Nb4O15 was ascertained by energy-dispersive X-ray spectroscopy characterization, and the Sr5Nb4O15−xNx was found to be a direct semiconductor with a light absorption edge of approximately 640 nm. Density functional theory investigation implies that the hybridization between the outmost N 2p orbitals and O 2p orbitals upshifts the original valence band maximum of Sr5Nb4O15 and endows its visible-light-responsive characteristics. Loading with cobalt oxide (CoOx) as cocatalyst, the as-prepared Sr5Nb4O15−xNx exhibited an enhanced photocatalytic O2 evolution activity from water splitting under visible-light illumination (λ > 420 nm). Moreover, another homogeneous N-doped layered perovskite-type niobium (Nb)-based oxynitride, Ba5Nb4O15−xNx, was also developed and investigated for the visible-light-actuated O2 production, highlighting the versatility of the present approach for exploring novel visible-light-responsive photocatalysts.
Hisatomi, T.; Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2019, 2, 387–399.
Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.
Zhao, D. M.; Dong, C. L.; Wang, B.; Chen, C.; Huang, Y. C.; Diao, Z. D.; Li, S. Z.; Guo, L. J.; Shen, S. H. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1903545.
Chen, D.; Ye, J. H. Selective-synthesis of high-performance single-crystalline Sr2Nb2O7 nanoribbon and SrNb2O6 nanorod photocatalysts. Chem. Mater. 2009, 21, 2327–2333.
Nakamura, A.; Tomita, O.; Higashi, M.; Hosokawa, S.; Tanaka, T.; Abe, R. Solvothermal synthesis of Ca2Nb2O7 fine particles and their high activity for photocatalytic water splitting into H2 and O2 under UV light irradiation. Chem. Lett. 2015, 44, 1001–1003.
Zhang, Y. F.; Yuan, J.; Gong, H. H.; Cao, Y.; Liu, K. W.; Cao, H. W.; Yan, H. J.; Zhu, J. G. (00l)-Facet-exposed planelike ABi2Nb2O9 (A = Ca, Sr, Ba) powders with a single-crystal grain for enhancement of photocatalytic activity.
Matsumoto, Y.; Koinuma, M.; Iwanaga, Y.; Sato, T.; Ida, S. N doping of oxide nanosheets. J. Am. Chem. Soc. 2009, 131, 6644–6645.
Zhou, Y. N.; Wen, T.; Kong, W. Q.; Yang, B. C.; Wang, Y. G. The impact of nitrogen doping and reduced-niobium self-doping on the photocatalytic activity of ultra-thin Nb3O8- nanosheets. Dalton Trans. 2017, 46, 13854–13861.
Liu, C.; Feng, Y.; Han, Z. T.; Sun, Y.; Wang, X. Q.; Zhang, Q. F.; Zou, Z. G. Z-scheme N-doped K4Nb6O17/g-C3N4 heterojunction with superior visible-light-driven photocatalytic activity for organic pollutant removal and hydrogen production.
Wu, F. F.; Lv, M. L.; Sun, X. Q.; Xie, Y. H.; Chen, H. M.; Ni, S.; Liu, G.; Xu, X. X. Efficient photocatalytic oxygen production over nitrogen-doped Sr4Nb2O9 under visible-light irradiation. ChemCatChem 2016, 8, 615–623.
Ji, S. M.; Borse, P. H.; Kim, H. G.; Hwang, D. W.; Jang, J. S.; Bae, S. W.; Lee, J. S. Photocatalytic hydrogen production from water-methanol mixtures using N-doped Sr2Nb2O7 under visible light irradiation: Effects of catalyst structure. Phys. Chem. Chem. Phys. 2005, 7, 1315–1321.
Bao, Y. F.; Du, S. W.; Qi, Y.; Li, G.; Zhang, P.; Shao, G. S.; Zhang, F. X. Synthesis of a visible-light-responsive perovskite SmTiO2N bifunctional photocatalyst via an evaporation-assisted layered-precursor strategy. Adv. Mater. 2021, 33, 2101883.
Ida, S.; Okamoto, Y.; Matsuka, M.; Hagiwara, H.; Ishihara, T. Preparation of tantalum-based oxynitride nanosheets by exfoliation of a layered oxynitride, CsCa2Ta3O10−xNy, and their photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 15773–15782.
Sun, X. Q.; Mi, Y. L.; Jiao, F.; Xu, X. X. Activating layered perovskite compound Sr2TiO4 via La/N codoping for visible light photocatalytic water splitting. ACS Catal. 2018, 8, 3209–3221.
Suzuki, H.; Tomita, O.; Higashi, M.; Abe, R. Design of nitrogen-doped layered tantalates for non-sacrificial and selective hydrogen evolution from water under visible light. J. Mater. Chem. A 2016, 4, 14444–14452.
Xu, X. X.; Wang, R.; Sun, X. Q.; Lv, M. L.; Ni, S. Layered perovskite compound NaLaTiO4 modified by nitrogen doping as a visible light active photocatalyst for water splitting. ACS Catal. 2020, 10, 9889–9898.
Miseki, Y.; Kato, H.; Kudo, A. Water splitting into H2 and O2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure. Energy Environ. Sci. 2009, 2, 306–314.
Yamada, T.; Murata, Y.; Wagata, H.; Yubuta, K.; Teshima, K. Facile morphological modification of Ba5Nb4O15 crystals using chloride flux and in situ growth investigation. Cryst. Growth Des. 2016, 16, 3954–3960.
Kodera, M.; Moriya, Y.; Katayama, M.; Hisatomi, T.; Minegishi, T.; Domen, K. Investigation on nitridation processes of Sr2Nb2O7 and SrNbO3 to SrNbO2N for photoelectrochemical water splitting. Sci. Rep. 2018, 8, 15849.
Seo, J.; Moriya, Y.; Kodera, M.; Hisatomi, T.; Minegishi, T.; Katayama, M.; Domen, K. Photoelectrochemical water splitting on particulate ANbO2N (A = Ba, Sr) photoanodes prepared from perovskite-type ANbO3. Chem. Mater. 2016, 28, 6869–6876.
Seo, J.; Nishiyama, H.; Yamada, T.; Domen, K. Visible-light-responsive photoanodes for highly active, stable water oxidation. Angew. Chem., Int. Ed. 2018, 57, 8396–8415.
Hisatomi, T.; Katayama, C.; Moriya, Y.; Minegishi, T.; Katayama, M.; Nishiyama, H.; Yamada, T.; Domen, K. Photocatalytic oxygen evolution using BaNbO2N modified with cobalt oxide under photoexcitation up to 740 nm. Energy Environ. Sci. 2013, 6, 3595–3599.
Wang, X.; Hisatomi, T.; Liang, J. W.; Wang, Z.; Xiang, Y. J.; Zhao, Y. H.; Dai, X. Y.; Takata, T.; Domen, K. Facet engineering of LaNbON2 transformed from LaKNaNbO5 for enhanced photocatalytic O2 evolution. J. Mater. Chem. A 2020, 8, 11743–11751.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Oka, D.; Hirose, Y.; Kaneko, M.; Nakao, S.; Fukumura, T.; Yamashita, K.; Hasegawa, T. Anion-substitution-induced nonrigid variation of band structure in SrNbO3−xNx (0 ≤ x ≤ 1) epitaxial thin films. ACS Appl. Mater. Interfaces 2018, 10, 35008–35015.
Vargas, B.; Ramos, E.; Pérez-Gutiérrez, E.; Alonso, J. C.; Solis-Ibarra, D. A direct bandgap copper-antimony halide perovskite. J. Am. Chem. Soc. 2017, 139, 9116–9119.
Chen, S. S.; Yang, J. X.; Ding, C. M.; Li, R. G.; Jin, S. Q.; Wang, D. E.; Han, H. X.; Zhang, F. X.; Li, C. Nitrogen-doped layered oxide Sr5Ta4O15−xNx for water reduction and oxidation under visible light irradiation. J. Mater. Chem. A 2013, 1, 5651–5659.
Bouri, M.; Aschauer, U. Suitability of different Sr2TaO3N surface orientations for photocatalytic water oxidation. Chem. Mater. 2020, 32, 75–84.
Zeng, J. Y.; Wang, X. S.; Xie, B. R.; Li, Q. R.; Zhang, X. Z. Large π-conjugated metal-organic frameworks for infrared-light-driven CO2 reduction. J. Am. Chem. Soc. 2022, 144, 1218–1231.
Li, Q. D.; Chen, Y.; Du, F.; Cui, X. L.; Dai, L. M. Bias-free synthesis of hydrogen peroxide from photo-driven oxygen reduction reaction using N-doped γ-graphyne catalyst. Appl. Catal. B: Environ. 2022, 304, 120959.
Raziq, F.; Aligayev, A.; Shen, H. H.; Ali, S.; Shah, R.; Ali, S.; Bakhtiar, S. H.; Ali, A.; Zarshad, N.; Zada, A. et al. Exceptional photocatalytic activities of rGO modified (B, N) co-doped WO3, coupled with CdSe QDs for one photon Z-scheme system: A joint experimental and DFT study. Adv. Sci. 2022, 9, 2102530.
Zhang, J. F.; Wageh, S.; Al-Ghamdi, A.; Yu, J. G. New understanding on the different photocatalytic activity of wurtzite and zinc-blende CdS. Appl. Catal. B: Environ. 2016, 192, 101–107.
Li, J.; Cai, L. J.; Shang, J.; Yu, Y.; Zhang, L. Z. Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis. Adv. Mater. 2016, 28, 4059–4064.
Jin, Y.; Li, F.; Li, T.; Xing, X. C.; Fan, W. H.; Zhang, L. L.; Hu, C. Enhanced internal electric field in S-doped BiOBr for intercalation, adsorption and degradation of ciprofloxacin by photoinitiation. Appl. Catal. B: Environ. 2022, 302, 120824.
Zhou, M. Z.; Liu, J. P.; Ye, Y. J.; Sun, X.; Chen, H. J.; Zhou, D.; Yin, Y. M.; Zhang, N.; Ling, Y. H.; Ciucci, F. et al. Enhancing the intrinsic activity and stability of perovskite cobaltite at elevated temperature through surface stress. Small 2021, 17, 2104144.
Kawashima, K.; Hojamberdiev, M.; Mabayoje, O.; Wygant, B. R.; Yubuta, K.; Mullins, C. B.; Domen, K.; Teshima, K. NH3-assisted chloride flux-coating method for direct fabrication of visible-light-responsive SrNbO2N crystal layers. CrystEngComm 2017, 19, 5532–5541.
Dong, B. B.; Cui, J. Y.; Qi, Y.; Zhang, F. X. Nanostructure engineering and modulation of (oxy)nitrides for application in visible-light-driven water splitting. Adv. Mater. 2021, 33, 2004697.
Hao, L. X.; Yang, Y. L.; Huan, Y.; Cheng, H. B.; Zhao, Y. Y.; Wang, Y. Y.; Yan, J.; Ren, W.; Ouyang, J. Achieving a high dielectric tunability in strain-engineered tetragonal K0.5Na0.5NbO3 films. npj Comput. Mater. 2021, 7, 62.
Wang, X. H.; Lejus, A. M.; Vivien, D. Oxidation behavior of lanthanide aluminum oxynitrides with magnetoplumbite-like structure. J. Am. Ceram. Soc. 1990, 73, 770–774.
Chen, S. S.; Shen, S.; Liu, G. J.; Qi, Y.; Zhang, F. X.; Li, C. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew. Chem., Int. Ed. 2015, 54, 3047–3051.
Hara, M.; Hitoki, G.; Takata, T.; Kondo, J. N.; Kobayashi, H.; Domen, K. TaON and Ta3N5 as new visible light driven photocatalysts. Catal. Today 2003, 78, 555–560.
Zhang, F. X.; Yamakata, A.; Maeda, K.; Moriya, Y.; Takata, T.; Kubota, J.; Teshima, K.; Oishi, S.; Domen, K. Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. J. Am. Chem. Soc. 2012, 134, 8348–8351.
Jiang, W. S.; Zhao, Y. J.; Zong, X. P.; Nie, H. D.; Niu, L. J.; An, L.; Qu, D.; Wang, X. Y.; Kang, Z. H.; Sun, Z. C. Photocatalyst for high-performance H2 production: Ga-doped polymeric carbon nitride. Angew. Chem., Int. Ed. 2021, 60, 6124–6129.
Yue, X. Z.; Yi, S. S.; Wang, R. W.; Zhang, Z. T.; Qiu, S. L. Well-controlled SrTiO3@Mo2C core–shell nanofiber photocatalyst: Boosted photo-generated charge carriers transportation and enhanced catalytic performance for water reduction. Nano Energy 2018, 47, 463–473.
Chauhan, H.; Kumar, Y.; Dana, J.; Satpati, B.; Ghosh, H. N.; Deka, S. Photoinduced ultrafast charge separation in colloidal 2-dimensional CdSe/CdS-Au hybrid nanoplatelets and corresponding application in photocatalysis. Nanoscale 2016, 8, 15802–15812.
Yue, X. Z.; Yi, S. S.; Wang, R. W.; Zhang, Z. T.; Qiu, S. L. A novel architecture of dandelion-like Mo2C/TiO2 heterojunction photocatalysts towards high-performance photocatalytic hydrogen production from water splitting. J. Mater. Chem. A 2017, 5, 10591–10598.
Nasir, M. S.; Yang, G. R.; Ayub, I.; Wang, S. L.; Yan, W. Tin diselinide a stable co-catalyst coupled with branched TiO2 fiber and g-C3N4 quantum dots for photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 270, 118900.