Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The synthesis of Pt-based nanoparticles (NPs) with ultrasmall feature and tailored structure is of great importance for catalysis yet challenging. In this work, we demonstrate a facile top–down strategy for the fabrication of small-sized Pt-based intermetallic compounds (IMCs) with L10 structure through the evaporation of Cd under high temperature. Impressively, such thermal treatment can be used as a versatile strategy for creating binary, ternary, quaternary, quinary, and senary L10-Pt-based IMCs. Moreover, the small-sized Pt-based IMCs display high stability against high temperature of 700 °C, which can serve as active and selective catalyst for the selective hydrogenation of 4-nitrophenylacetylene. This work may not only provide a versatile top–down strategy for fabricating highly stable small-sized Pt-based NPs with L10 structure, but also promote their extensive applications in catalysis and beyond.
Ryoo, R.; Kim, J.; Jo, C.; Han, S. W.; Kim, J. C.; Park, H.; Han, J.; Shin, H. S.; Shin, J. W. Rare-earth-platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature 2020, 585, 221–224.
Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564–569.
Bai, L. C.; Wang, X.; Chen, Q.; Ye, Y. F.; Zheng, H. Q.; Guo, J. H.; Yin, Y. D.; Gao, C. B. Explaining the size dependence in platinum-nanoparticle-catalyzed hydrogenation reactions. Angew. Chem., Int. Ed. 2016, 55, 15656–15661.
Fu, X. Y.; Wan, C. Z.; Zhang, A. X.; Zhao, Z. P.; Huyan, H. X.; Pan, X. Q.; Du, S. J.; Duan, X. F.; Huang, Y. Pt3Ag alloy wavy nanowires as highly effective electrocatalysts for ethanol oxidation reaction. Nano Res. 2020, 13, 1472–1478.
Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.
Chan, Y. T.; Siddharth, K.; Shao, M. H. Investigation of cubic Pt alloys for ammonia oxidation reaction. Nano Res. 2020, 13, 1920–1927.
Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.
Zhang, B. T.; Fu, G. T.; Li, Y. T.; Liang, L. C.; Grundish, N. S.; Tang, Y. W.; Goodenough, J. B.; Cui, Z. M. General strategy for synthesis of ordered Pt3M intermetallics with ultrasmall particle size. Angew. Chem., Int. Ed. 2020, 59, 7857–7863.
Yoo, T. Y.; Yoo, J. M.; Sinha, A. K.; Bootharaju, M. S.; Jung, E.; Lee, H. S.; Lee, B. H.; Kim, J.; Antink, W. H.; Kim, Y. M. et al. Direct synthesis of intermetallic platinum-alloy nanoparticles highly loaded on carbon supports for efficient electrocatalysis. J. Am. Chem. Soc. 2020, 142, 14190–14200.
Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.
Feng, Q. C.; Zhao, S.; Wang, Y.; Dong, J. C.; Chen, W. X.; He, D. S.; Wang, D. S.; Yang, J.; Zhu, Y. M.; Zhu, H. M. et al. Isolated single-atom Pd sites in intermetallic nanostructures: High catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 2017, 139, 7294–7301.
Prinz, J.; Gaspari, R.; Pignedoli, C. A.; Vogt, J.; Gille, P.; Armbrüster, M.; Brune, H.; Gröning, O.; Passerone, D.; Widmer, R. Isolated Pd sites on the intermetallic PdGa (111) and PdGa (
Li, J. R.; Sun, S. H. Intermetallic nanoparticles: Synthetic control and their enhanced electrocatalysis. Acc. Chem. Res. 2019, 52, 2015–2025.
Wang, J.; Zhang, J.; Liu, G. G.; Ling, C. Y.; Chen, B.; Huang, J. T.; Liu, X. Z.; Li, B.; Wang, A. L.; Hu, Z. N. et al. Crystal phase-controlled growth of PtCu and PtCo alloys on 4H Au nanoribbons for electrocatalytic ethanol oxidation reaction. Nano Res. 2020, 13, 1970–1975.
Li, J. R.; Sun, S. H. Intermetallic nanoparticles: Synthetic control and their enhanced electrocatalysis. Acc. Chem. Res. 2019, 52, 2015–2025.
Hu, Y. Z.; Lu, Y.; Zhao, X. R.; Shen, T.; Zhao, T. H.; Gong, M. X.; Chen, K.; Lai, C. L.; Zhang, J.; Xin, H. L. et al. Highly active N-doped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction. Nano Res. 2020, 13, 2365–2370.
Qiu, Y. J.; Zhang, J.; Jin, J.; Sun, J. Q.; Tang, H. L.; Chen, Q. Q.; Zhang, Z. D.; Sun, W. M.; Meng, G.; Xu, Q. et al. Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction. Nat. Commun. 2021, 12, 5273.
Guan, J. Y.; Yang, S. X.; Liu, T. T.; Yu, Y. H.; Niu, J.; Zhang, Z. P.; Wang, F. Intermetallic FePt@PtBi core–shell nanoparticles for oxygen reduction electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 21899–21904.
Yan, Y. C.; Du, J. S.; Gilroy, K. D.; Yang, D. R.; Xia, Y. N.; Zhang, H. Intermetallic nanocrystals: Syntheses and catalytic applications. Adv. Mater. 2017, 29, 1605997.
Jin, Y.; Wang, P. T.; Mao, X. N.; Liu, S. H.; Li, L. G.; Wang, L.; Shao, Q.; Xu, Y.; Huang, X. Q. A top–down strategy to realize surface reconstruction of small-sized platinum-based nanoparticles for selective hydrogenation. Angew. Chem., Int. Ed. 2021, 60, 17430–17434.
Han, A. J.; Zhang, J.; Sun, W. M.; Chen, W. X.; Zhang, S. L.; Han, Y. H.; Feng, Q. C.; Zheng, L. R.; Gu, L.; Chen, C. et al. Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nat. Commun. 2019, 10, 3787.
Wang, Q. M.; Chen, S. G.; Shi, F.; Chen, K.; Nie, Y.; Wang, Y.; Wu, R.; Li, J.; Zhang, Y.; Ding, W. et al. Structural evolution of solid Pt nanoparticles to a hollow PtFe alloy with a Pt-skin surface via space-confined pyrolysis and the nanoscale Kirkendall effect. Adv. Mater. 2016, 28, 10673–10678.
Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Subnanometer PtRh nanowire with alleviated poisoning effect and enhanced C–C bond cleavage for ethanol oxidation electrocatalysis. ACS Catal. 2019, 9, 6607–6612.
Zhao, T.; Luo, E. G.; Li, Y.; Wang, X.; Liu, C. P.; Xing, W.; Ge, J. J. Highly dispersed L10-PtZn intermetallic catalyst for efficient oxygen reduction. Sci. China Mater. 2021, 64, 1671–1678.
Wang, P. T.; Jiang, K. Z.; Wang, G. M.; Yao, J. L.; Huang, X. Q. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12859–12863.
Ostrom, C. K.; Chen, A. C. Synthesis and electrochemical study of Pd-based trimetallic nanoparticles for enhanced hydrogen storage. J. Phys. Chem. C 2013, 117, 20456–20464.
Li, T. Y.; Dong, Q.; Huang, Z. N.; Wu, L. P.; Yao, Y. G.; Gao, J. L.; Wang, X. Z.; Zhang, H. C.; Wang, D. W.; Li, T. et al. Interface engineering between multi-elemental alloy nanoparticles and a carbon support toward stable catalysts. Adv. Mater. 2022, 34, 2106436.
Komatsu, T.; Takasaki, M.; Ozawa, K.; Furukawa, S.; Muramatsu, A. PtCu intermetallic compound supported on alumina active for preferential oxidation of CO in hydrogen. J. Phys. Chem. C 2013, 117, 10483–10491.
Feng, Y. G.; Xu, W. W.; Huang, B. L.; Shao, Q.; Xu, L.; Yang, S. Z.; Huang, X. Q. On-demand, ultraselective hydrogenation system enabled by precisely modulated Pd-Cd nanocubes. J. Am. Chem. Soc. 2020, 142, 962–972.
Yun, Q. B.; Lu, Q. P.; Li, C. L.; Chen, B.; Zhang, Q. H.; He, Q. Y.; Hu, Z. N.; Zhang, Z. C.; Ge, Y. Y.; Yang, N. L. et al. Synthesis of PdM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation. ACS Nano 2019, 13, 14329–14336.
Wu, B. H.; Huang, H. Q.; Yang, J.; Zheng, N. F.; Fu, G. Selective hydrogenation of α, β-unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals. Angew. Chem., Int. Ed. 2012, 51, 3440–3443.
Long, Y.; Li, J.; Wu, L. L.; Wang, Q. S.; Liu, Y.; Wang, X.; Song, S. Y.; Zhang, H. J. Construction of trace silver modified core@shell structured Pt-Ni nanoframe@CeO2 for semihydrogenation of phenylacetylene. Nano Res. 2019, 12, 869–875.
Mao, J. J.; Chen, W. X.; Sun, W. M.; Chen, Z.; Pei, J. J.; He, D. S.; Lv, C. L.; Wang, D. S.; Li, Y. D. Rational control of the selectivity of a ruthenium catalyst for hydrogenation of 4-nitrostyrene by strain regulation. Angew. Chem., Int. Ed. 2017, 56, 11971–11975.
Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Structurally ordered Pt3Sn nanofibers with highlighted antipoisoning property as efficient ethanol oxidation electrocatalysts. ACS Catal. 2020, 10, 3455–3461.
Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747–4765.