Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The morphology manipulation of nanomaterials by ion irradiation builds a way to precisely control physicochemical properties. Under the continuous irradiation of low energy Ga+, Ne+, and He+ ions, an ion compaction effect has been found in hollow FePt nanochains with ultrathin shell that the volumes of the nanochains are gradually compacted by ions. The deep learning algorithm has been successfully applied to automatically and precisely measure average sizes of spheres in hollow FePt nanochains. The compaction under ion irradiation is very fast in the very early period and then proceeds to a slow region. The compaction rates in both regions are linearly fitted and all the values are in the order of 10–17 to 10–14 cm2/ion. Ion species and ion current have effect on the compaction rate. For example, the compaction rate of Ga+ ions is larger than those of Ne+ and He+ ions under an identical current, while irradiation with larger current can compact nanochains faster. The ion compaction effect originates from the local shear deformation caused by the interaction between incident ions and the electrons of Fe and Pt atoms in the ultrathin shell. With continuous irradiation, the crystalline clusters of FePt nanchains firstly grow larger and then become amorphous. The ion compaction effect can be applied to tune the size and crystal structure of hollow structures with a precise rate by choosing appropriate ion species and current.
Wang, X. N.; Wan, W. J.; Shen, S. H.; Wu, H. Y.; Zhong, H. Z.; Jiang, C. Z.; Ren, F. Application of ion beam technology in (photo)electrocatalytic materials for renewable energy. Appl. Phys. Rev. 2020, 7, 041303.
Kaur, M.; Gautam, S.; Goyal, N. Ion-implantation and photovoltaics efficiency: A review. Mater. Lett. 2022, 309, 131356.
Xiang, X. P.; He, Z. Y.; Rao, J. J.; Fan, Z.; Wang, X. W.; Chen, Y. Applications of ion beam irradiation in multifunctional oxide thin films: A review. ACS Appl. Electron. Mater. 2021, 3, 1031–1042.
Liu, Z.; Cui, A. J.; Li, J. J.; Gu, C. Z. Folding 2D structures into 3D configurations at the micro/nanoscale: Principles, techniques, and applications. Adv. Mater. 2019, 31, 1802211.
Juge, R.; Bairagi, K.; Rana, K. G.; Vogel, J.; Sall, M.; Mailly, D.; Pham, V. T.; Zhang, Q.; Sisodia, N.; Foerster, M. et al. Helium ions put magnetic skyrmions on the track. Nano Lett. 2021, 21, 2989–2996.
Xia, T. Y.; Luo, H.; Wang, S. G.; Liu, J. L.; Yu, G. H.; Wang, R. M. Large-scale synthesis of gold dendritic nanostructures for surface enhanced Raman scattering. CrystEngComm 2015, 17, 4200–4204.
Yang, S. Y.; Liu, Z.; Hu, S.; Jin, A. Z.; Yang, H. F.; Zhang, S.; Li, J. J.; Gu, C. Z. Spin-selective transmission in chiral folded metasurfaces. Nano Lett. 2019, 19, 3432–3439.
Rettner, C. T.; Anders, S.; Baglin, J. E. E.; Thomson, T.; Terris, B. D. Characterization of the magnetic modification of Co/Pt multilayer films by He+, Ar+, and Ga+ ion irradiation. Appl. Phys. Lett. 2002, 80, 279–281.
Aumayr, F.; Facsko, S.; El-Said, A. S.; Trautmann, C.; Schleberger, M. Single ion induced surface nanostructures: A comparison between slow highly charged and swift heavy ions. J. Phys.: Condens. Matter 2011, 23, 393001.
Fassbender, J.; McCord, J. Magnetic patterning by means of ion irradiation and implantation. J. Magn. Magn. Mater. 2008, 320, 579–596.
Allen, F. I. A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope. Beilstein J. Nanotechnol. 2021, 12, 633–664.
Sun, Y. J.; Liang, Y. X.; Luo, M. C.; Lv, F.; Qin, Y. N.; Wang, L.; Xu, C.; Fu, E. G.; Guo, S. J. Defects and interfaces on PtPb nanoplates boost fuel cell electrocatalysis. Small 2018, 14, 1702259.
Tang, B.; Cui, B. Q.; Wang, L. M.; Ma, R. G.; Li, N.; Chen, L. H.; Cao, L. X.; Huang, Q. H.; Zhang, J.; Ran, G. et al. The development of a hydrogen-helium dual-beam ion implanter. Rev. Sci. Instrum. 2020, 91, 013309.
Thieberger, P.; Carlson, C.; Steski, D.; Ghandi, R.; Bolotnikov, A.; Lilienfeld, D.; Losee, P. Novel high-energy ion implantation facility using a 15 MV Tandem Van de Graaff. Nucl. Instrum. Methods Phys. Res. , Sect. B Beam Interact. Mater. Atoms 2019, 442, 36–40.
Petrov, Y. V.; Grigoryev, E. A.; Baraban, A. P. Helium focused ion beam irradiation with subsequent chemical etching for the fabrication of nanostructures. Nanotechnology 2020, 31, 215301.
Li, P.; Chen, S. Y.; Dai, H. F.; Yang, Z. M.; Chen, Z. M.; Wang, Y. S.; Chen, Y. Q.; Peng, W. Q.; Shan, W. B.; Duan, H. G. Recent advances in focused ion beam nanofabrication for nanostructures and devices: Fundamentals and applications. Nanoscale 2021, 13, 1529–1565.
Klaumünzer, S.; Schumacher, G.; Rentzsch, S.; Vogl, G.; Söldner, L.; Bieger, H. Severe radiation-damage by heavy-ions in glassy Pd80Si20. Acta Metall. 1982, 30, 1493–1502.
Rizza, G. From ion-hammering to ion-shaping: An historical overview. J. Phys. Conf. Ser. 2015, 629, 012005.
Li, R.; Pang, C.; Li, Z. Q.; Chen, F. Plasmonic nanoparticles in dielectrics synthesized by ion beams: Optical properties and photonic applications. Adv. Opt. Mater. 2020, 8, 1902087.
Boltasseva, A.; Atwater, H. A. Low-loss plasmonic metamaterials. Science 2011, 331, 290–291.
Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.
Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.
Arora, W. J.; Sijbrandij, S.; Stern, L.; Notte, J.; Smith, H. I.; Barbastathis, G. Membrane folding by helium ion implantation for three-dimensional device fabrication. J. Vac. Sci. Technol. B 2007, 25, 2184–2187.
Rajput, N. S.; Banerjee, A.; Verma, H. C. Electron- and ion-beam-induced maneuvering of nanostructures: Phenomenon and applications. Nanotechnology 2011, 22, 485302.
Rahman, F. H. M; McVey, S.; Farkas, L.; Notte, J. A.; Tan, S. D.; Livengood, R. H. The prospects of a subnanometer focused neon ion beam. Scanning 2012, 34, 129–134.
Wu, J. G.; Yuan, Y.; Niu, S. Y.; Wei, X. F.; Yang, J. J. Multiscale characterization of pore structure and connectivity of Wufeng-Longmaxi shale in Sichuan Basin, China. Mar. Petrol. Geol. 2020, 120, 104514.
Liu, J. L.; Niu, S. Y.; Li, G. L.; Du, Z. M.; Zhang, Y. X.; Yang, J. J. Reconstructing 3D digital model without distortion for poorly conductive porous rock by nanoprobe-assisted FIB-SEM tomography. J. Microsc. 2021, 282, 258–266.
Snoeks, E.; Van Blaaderen, A.; Van Dillen, T.; Van Kats, C. M.; Brongersma, M. L.; Polman, A. Colloidal ellipsoids with continuously variable shape. Adv. Mater. 2000, 12, 1511–1514.
Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.
Sun, Q.; Ren, Z.; Wang, R. M.; Wang, N.; Cao, X. Platinum catalyzed growth of NiPt hollow spheres with an ultrathin shell. J. Mater. Chem. 2011, 21, 1925–1930.
Liu, J. L.; Xia, T. Y.; Wang, S. G.; Yang, G.; Dong, B. W.; Wang, C.; Ma, Q. D.; Sun, Y. N.; Wang, R. M. Oriented-assembly of hollow FePt nanochains with tunable catalytic and magnetic properties. Nanoscale 2016, 8, 11432–11440.
Liu, J. H.; Liu, X. W. Two-dimensional nanoarchitectures for lithium storage. Adv. Mater. 2012, 24, 4097–4111.
Tiwari, J. N.; Tiwari, R. N.; Kim, K. S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater Sci. 2012, 57, 724–803.
Sun, Q.; Liu, W.; Wang, R. M. Double-layered NiPt nanobowls with ultrathin shell synthesized in water at room temperature. CrystEngComm 2012, 14, 5151–5154.
Shen, X.; Sun, Q.; Zhu, J.; Yao, Y.; Liu, J.; Jin, C. Q.; Yu, R. C.; Wang, R. M. Structural stability and Raman scattering of CoPt and NiPt hollow nanospheres under high pressure. Prog. Nat. Sci. Mater. 2013, 23, 382–387.
Du, F. H.; Li, B.; Fu, W.; Xiong, Y. J.; Wang, K. X.; Chen, J. S. Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with high structure stability. Adv. Mater. 2014, 26, 6145–6150.
Wang, D. L.; He, H.; Han, L. L.; Lin, R. Q.; Wang, J.; Wu, Z. X.; Liu, H. F.; Xin, H. L. L. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries. Nano Energy 2016, 20, 212–220.
Liu, J. L.; Zhang, Y. X.; Xia, T. Y.; Zhang, Q. Q.; Wang, S. G.; Wang, R. M.; Yang, J. J. One-dimensional hollow FePt nanochains: Applications in hydrolysis of NaBH4 and structural stability under Ga+ ion irradiation. Nanotechnology 2020, 31, 185704.
McCulloch, D.; Hoffman, A.; Prawer, S. Ion-beam induced compaction in glassy carbon. J. Appl. Phys. 1993, 74, 135–138.
Raut, U.; Teolis, B. D.; Loeffler, M. J.; Vidal, R. A.; Famá, M.; Baragiola, R. A. Compaction of microporous amorphous solid water by ion irradiation. J. Chem. Phys. 2007, 126, 244511.
Das, K.; Freund, J. B.; Johnson, H. T. A FIB induced boiling mechanism for rapid nanopore formation. Nanotechnology 2014, 25, 035303.
Raineri, V.; Coffa, S.; Szilágyi, E.; Gyulai, J.; Rimini, E. He-vacancy interactions in Si and their influence on bubble formation and evolution. Phys. Rev. B 2000, 61, 937–945.
Li, R. R.; Zhu, R.; Chen, S. L.; He, C.; Li, M. Q.; Zhang, J. M.; Gao, P.; Liao, Z. M.; Xu, J. Study of damage generation induced by focused helium ion beam in silicon. J. Vac. Sci. Technol. B 2019, 37, 031804.
Oliviero, E.; Peripolli, S.; Amaral, L.; Fichtner, P. F. P.; Beaufort, M. F.; Barbot, J. F.; Donnelly, S. E. Damage accumulation in neon implanted silicon. J. Appl. Phys. 2006, 100, 043505.
Ren, S. Q.; He, K. M.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149.
Hou, M. D.; Klaumünzer, S.; Schumacher, G. Dimensional changes of metallic glasses during bombardment with fast heavy ions. Phys. Rev. B 1990, 41, 1144–1157.
Liang, Y. X.; Sun, Y. J.; Wang, X. Y.; Fu, E. G.; Zhang, J.; Du, J. L.; Wen, X. D.; Guo, S. J. High electrocatalytic performance inspired by crystalline/amorphous interface in PtPb nanoplate. Nanoscale 2018, 10, 11357–11364.
Zhang, Q. Q.; Liu, J. L.; Xia, T. Y.; Qi, J.; Lyu, H. C.; Luo, B. Y.; Wang, R. M.; Guo, Y. Z.; Wang, L. H.; Wang, S. G. Antiferromagnetic element Mn modified PtCo truncated octahedral nanoparticles with enhanced activity and durability for direct methanol fuel cells. Nano Res. 2019, 12, 2520–2527.
Yu, Y. N.; Zhai, M. M.; Hu, J. B. Electrocatalytic oxidation of ethanol and ethylene glycol on bimetallic Ni and Ti nanoparticle-modified indium tin oxide electrode in alkaline solution. Prog. Nat. Sci. Mater. Int. 2019, 29, 511–516.