Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Phosphorus-induced electronic structure reformation of hollow NiCo2Se4 nanoneedle arrays enabling highly efficient and durable hydrogen evolution in all-pH media

Guojing Wang§Yuzhuo Sun§Yidan ZhaoYang ZhangXiaohong LiLouzhen FanYunchao Li()
Key laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China

§ Guojing Wang and Yuzhuo Sun contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
P8.71-NiCo2Se4/CFP hollow nanoneedle arrays grown on carbon fiber paper were first synthesized, which exhibit an outstanding hydrogen evolution reaction (HER) performance and good durability in all-pH media due to the optimized electronic structure and the increased active sites induced by the P doping.

Abstract

With practical electrocatalytic hydrogen production frequently involving the splitting of water in various pH media, there is an urgent need but still a technical challenge to develop low-cost, highly active, and stable electrocatalysts for pH-universal hydrogen evolution reaction (HER). We report herein the adoption of a hydrothermal reaction combined with a post gas-phase doping strategy to fabricate P-doped NiCo2Se4 hollow nanoneedle arrays on carbon fiber paper (i.e., P-NiCo2Se4/CFP). Notably, the optimal arrays (P8.71-NiCo2Se4/CFP) can afford an outstanding pH-universal HER performance, with an overpotential as low as 33, 57, and 69 mV at 10 mA·cm−2 and corresponding Tafel slopes down to 52, 61, and 72 mV·dec−1 in acidic, alkaline, and neutral media, respectively, outperforming most state-of-the-art nonprecious catalysts and even the commercial Pt/C catalyst in both neutral and alkaline media at large current densities. Impressively, P8.71-NiCo2Se4/CFP also displays good durability toward long-time stability testing in harsh acidic and alkaline electrolytes. Experimental and theoretical studies further reveal that the doping of P atoms into NiCo2Se4 can simultaneously optimize its H* adsorption/desorption energy, water adsorption energy, and water dissociation energy by adjusting the local electronic states of various active sites, thus accelerating the rate-determining step of HER in different pH media to endow P-NiCo2Se4 with an outstanding pH-universal HER performance. This work provides atomic-level insights into the roles of active sites in various electrolysis environments, thereby shedding new light on the rational design of highly efficient pH-universal nonprecious catalysts for HER and beyond.

Electronic Supplementary Material

Download File(s)
12274_2022_4534_MOESM1_ESM.pdf (3.7 MB)

References

1

Qi, J.; Zhang, W.; Cao, R. Solar-to-hydrogen energy conversion based on water splitting. Adv. Energy Mater. 2018, 8, 1701620.

2

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

3

Shi, Y.; Zhou, Y.; Yang, D. R.; Xu, W. X.; Wang, C.; Wang, F. B.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 15479–15485.

4

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

5

You, B.; Sun, Y. J. Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 2018, 51, 1571–1580.

6

Li, Y.; Luo, Z. Y.; Ge, J. J.; Liu, C. P.; Xing, W. Research progress in hydrogen evolution low noble/non-precious metal catalysts of water electrolysis. J. Electrochem. 2018, 24, 572–588.

7

Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934.

8

Sun, X. W.; Xu, K. Q.; Fleischer, C.; Liu, X.; Grandcolas, M.; Strandbakke, R.; Bjørheim, T. S.; Norby, T.; Chatzitakis, A. Earth abundant electrocatalysts in proton exchange membrane electrolyzers. Catalysts 2018, 8, 657.

9

Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.

10

Hu, C. L.; Zhang, L.; Gong, J. L. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645.

11

Anantharaj, S.; Noda, S.; Jothi, V. R.; Yi, S.; Driess, M.; Menezes, P. W. Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 18981–19006.

12

Bennett, J. E. Electrodes for generation of hydrogen and oxygen from seawater. Int. J. Hydrogen Energy 1980, 5, 401–408.

13

Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933–942.

14

Yu, L.; Wu, L. B.; Song, S. W.; McElhenny, B.; Zhang, F. H.; Chen, S.; Ren, Z. F. Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|NixP|NiCoN microsheet arrays catalyst. ACS Energy Lett. 2020, 5, 2681–2689.

15

Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433.

16

Gupta, S.; Patel, N.; Fernandes, R.; Kadrekar, R.; Dashora, A.; Yadav, A. K.; Bhattacharyya, D.; Jha, S. N.; Miotello, A.; Kothari, D. C. Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl. Catal. B: Environ. 2016, 192, 126–133.

17

Jin, H. Y.; Liu, X.; Vasileff, A.; Jiao, Y.; Zhao, Y. Q.; Zheng, Y.; Qiao, S. Z. Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano 2018, 12, 12761–12769.

18

Xu, H. T.; Wan, J.; Zhang, H. J.; Fang, L.; Liu, L.; Huang, Z. Y.; Li, J.; Gu, X.; Wang, Y. A new platinum-like efficient electrocatalyst for hydrogen evolution reaction at all pH: Single-crystal metallic interweaved V8C7 networks. Adv. Energy Mater. 2018, 8, 1800575.

19

Kuang, P. Y.; Tong, T.; Fan, K.; Yu, J. G. In situ fabrication of Ni-Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catal. 2017, 7, 6179–6187.

20

Staszak-Jirkovský, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G. et al. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197–203.

21

Yu, J.; Zhang, M. L.; Liu, J. Y.; Chen, R. R.; Li, R. M.; Liu, Q.; Zhou, L. M.; Liu, P. L.; Wang, J. Heterogeneous NiSe2/Ni ultrafine nanoparticles embedded into an N, S-codoped carbon framework for pH-universal hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2019, 7, 4119–4127.

22

Zhang, R.; Wang, X. X.; Yu, S. J.; Wen, T.; Zhu, X. W.; Yang, F. X.; Sun, X. N.; Wang, X. K.; Hu, W. P. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1605502.

23

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

24

Jiao, Y. Q.; Yan, H. J.; Wang, R. H.; Wang, X. W.; Zhang, X. M.; Wu, A. P.; Tian, C. G.; Jiang, B. J.; Fu, H. G. Porous plate-like MoP assembly as an efficient pH-universal hydrogen evolution electrocatalyst. ACS Appl. Mater. Interfaces 2020, 12, 49596–49606.

25

Cao, E. P.; Chen, Z. M.; Wu, H.; Yu, P.; Wang, Y.; Xiao, F.; Chen, S.; Du, S. C.; Xie, Y.; Wu, Y. Q. et al. Boron-induced electronic-structure reformation of CoP nanoparticles drives enhanced pH-universal hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 4154–4160.

26

Huang, J. J.; Wang, J. Y.; Xie, R. K.; Tian, Z. H.; Chai, G. L.; Zhang, Y. W.; Lai, F. L.; He, G. J.; Liu, C. T.; Liu, T. X. et al. A universal pH range and a highly efficient Mo2C-based electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 19879–19886.

27

Men, Y. N.; Li, P.; Zhou, J. H.; Cheng, G. Z.; Chen, S. L.; Luo, W. Tailoring the electronic structure of Co2P by N doping for boosting hydrogen evolution reaction at all pH values. ACS Catal. 2019, 9, 3744–3752.

28

Luo, Y. T.; Tang, L.; Khan, U.; Yu, Q. M.; Cheng, H. M.; Zou, X. L.; Liu, B. L. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 2019, 10, 269.

29

Geng, S.; Tian, F. Y.; Li, M. G.; Guo, X.; Yu, Y. S.; Yang, W. W.; Hou, Y. L. Hole-rich CoP nanosheets with an optimized d-band center for enhancing pH-universal hydrogen evolution electrocatalysis. J. Mater. Chem. A 2021, 9, 8561–8567.

30

Gu, Y.; Wu, A. P.; Jiao, Y. Q.; Zheng, H. R.; Wang, X. Q.; Xie, Y.; Wang, L.; Tian, C. G.; Fu, H. G. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 6673–6681.

31

Kim, M.; Anjum, M. A. R.; Choi, M.; Jeong, H. Y.; Choi, S. H.; Park, N.; Lee, J. S. Covalent 0D–2D heterostructuring of Co9S8-MoS2 for enhanced hydrogen evolution in all pH electrolytes. Adv. Funct. Mater. 2020, 30, 2002536.

32

Wu, A. P.; Gu, Y.; Xie, Y.; Yan, H. J.; Jiao, Y. Q.; Wang, D. X.; Tian, C. G. Interfacial engineering of MoS2/MoN heterostructures as efficient electrocatalyst for pH-universal hydrogen evolution reaction. J. Alloys Compd. 2021, 867, 159066.

33

Xie, J. F.; Xie, Y. Transition metal nitrides for electrocatalytic energy conversion: Opportunities and challenges. Chem. -Eur. J. 2016, 22, 3588–3598.

34

Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat. Commun. 2015, 6, 6512.

35

Yao, M. Q.; Wang, B. J.; Sun, B. L.; Luo, L. F.; Chen, Y. J.; Wang, J. W.; Wang, N.; Komarneni, S.; Niu, X. B.; Hu, W. C. Rational design of self-supported Cu@WC core-shell mesoporous nanowires for pH-universal hydrogen evolution reaction. Appl. Catal. B: Environ. 2021, 280, 119451.

36

Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

37

Shen, Y.; Zhou, Y. F.; Wang, D.; Wu, X.; Li, J.; Xi, J. Y. Nickel-copper alloy encapsulated in graphitic carbon shells as electrocatalysts for hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1701759.

38

Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed. 2014, 53, 4372–4376.

39

Mou, H. Y.; Xue, Z. M.; Zhang, B. L.; Lan, X.; Mu, T. C. Deep eutectic solvent strategy to form defect-rich N, S, and O tridoped carbon/Co9S8 hybrid materials for a pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 2099–2103.

40

Hafner, J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044–2078.

41

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

42

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

43

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

44

Li, Y.; Gao, Y. G.; Yang, S.; Wu, C. Q.; Tan, Y. W. Anion-modulated nickel-based nanoheterostructures as high performance electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 12013–12027.

45

Xin, Y. M.; Kan, X.; Gan, L. Y.; Zhang, Z. H. Heterogeneous bimetallic phosphide/sulfide nanocomposite for efficient solar-energy-driven overall water splitting. ACS Nano 2017, 11, 10303–10312.

46

Hou, Y.; Qiu, M.; Zhang, T.; Zhuang, X. D.; Kim, C. S.; Yuan, C.; Feng, X. L. Ternary porous cobalt phosphoselenide nanosheets: An efficient electrocatalyst for electrocatalytic and photoelectrochemical water splitting. Adv. Mater. 2017, 29, 1701589.

47

Wu, J.; Chen, T.; Zhu, C. Y.; Du, J. J.; Huang, L. S.; Yan, J.; Cai, D. M.; Guan, C.; Pan, C. X. Rational construction of a WS2/CoS2 heterostructure electrocatalyst for efficient hydrogen evolution at all pH values. ACS Sustainable Chem. Eng. 2020, 8, 4474–4480.

48

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

49

Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256–1260.

50

Zhou, K. L.; Wang, Z. L.; Han, C. B.; Ke, X. X.; Wang, C. H.; Jin, Y. H.; Zhang, Q. Q.; Liu, J. B.; Wang, H.; Yan, H. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nat. Commun. 2021, 12, 3783.

51

Kucernak, A. R. J.; Sundaram, V. N. N. Nickel phosphide: The effect of phosphorus content on hydrogen evolution activity and corrosion resistance in acidic medium. J. Mater. Chem. A 2014, 2, 17435–17445.

52

Zhang, G.; Feng, Y. S.; Lu, W. T.; He, D.; Wang, C. Y.; Li, Y. K.; Wang, X. Y.; Cao, F. F. Enhanced catalysis of electrochemical overall water splitting in alkaline media by Fe doping in Ni3S2 nanosheet arrays. ACS Catal. 2018, 8, 5431–5441.

53

Zheng, Y. R.; Wu, P.; Gao, M. R.; Zhang, X. L.; Gao, F. Y.; Ju, H. X.; Wu, R.; Gao, Q.; You, R.; Huang, W. X. et al. Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat. Commun. 2018, 9, 2533.

54

Chen, G. B.; Wang, T.; Zhang, J.; Liu, P.; Sun, H. J.; Zhuang, X. D.; Chen, M. W.; Feng, X. L. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 2018, 30, 1706279.

55

Dong, J.; Zhang, F. Q.; Yang, Y.; Zhang, Y. B.; He, H. L.; Huang, X. F.; Fan, X. J.; Zhang, X. M. (003)-facet-exposed Ni3S2 nanoporous thin films on nickel foil for efficient water splitting. Appl. Catal. B: Environ. 2019, 243, 693–702.

56

Hammer, B.; Norskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240.

57

Wang, J.; Li, X. Z.; Wei, B.; Sun, R.; Yu, W.; Hoh, H. Y.; Xu, H. M.; Li, J.; Ge, X. B.; Chen, Z. X. et al. Activating basal planes of NiPS3 for hydrogen evolution by nonmetal heteroatom doping. Adv. Funct. Mater. 2020, 30, 1908708.

58

Shi, Y.; Ma, Z. R.; Xiao, Y. Y.; Yin, Y. C.; Huang, W. M.; Huang, Z. C.; Zheng, Y. Z.; Mu, F. Y.; Huang, R.; Shi, G. Y. et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 2021, 12, 3021.

59

Zhang, H. B.; Ma, Z. J.; Duan, J. J.; Liu, H. M.; Liu, G. G.; Wang, T.; Chang, K.; Li, M.; Shi, L.; Meng, X. G. et al. Active sites implanted carbon cages in core-shell architecture: Highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 2016, 10, 684–694.

60

Yin, J.; Jin, J.; Zhang, H.; Lu, M.; Peng, Y.; Huang, B. L.; Xi, P. X.; Yan, C. H. Atomic arrangement in metal-doped NiS2 boosts the hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2019, 58, 18676–18682.

Nano Research
Pages 8771-8782
Cite this article:
Wang G, Sun Y, Zhao Y, et al. Phosphorus-induced electronic structure reformation of hollow NiCo2Se4 nanoneedle arrays enabling highly efficient and durable hydrogen evolution in all-pH media. Nano Research, 2022, 15(10): 8771-8782. https://doi.org/10.1007/s12274-022-4534-9
Topics:
Metrics & Citations  
Article History
Copyright
Return