AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A photonanozyme with light-empowered specific peroxidase-mimicking activity

Sili Lin§Wenlong Tan§Pengfei HanXu LiJinzhao LiZhou NieKun Li( )
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China

§ Sili Lin and Wenlong Tan contributed equally to this work.

Show Author Information

Graphical Abstract

Light as a direct energy source driving photonanozymatic reactions with H2O2 enables TiO2 photonanozymes to have the peroxidase-like specificity exclusively under illumination. Photogenerated hot charge carriers and the accompanied reactive oxygen species are responsible for light-empowered photonanozymatic activity, while co-substrates are conducive to the formation of the photo-reactive peroxo-oxygen bridge bond between TiO2 and H2O2 that specifically allows the peroxidase-like activity.

Abstract

Although nanozymes have been widely developed, directly utilizing light to drive catalytic reactions like natural photoenzymes still remains challenging. Herein, we propose that photonanozymes (PNZs), as a novel kind of nanozyme, exclusively possess enzyme-mimicking activity under illumination. Only in the presence of visible light, the as-synthesized TiO2 proposed in this contribution shows excellent specificity of peroxidase-like without any oxidase- or catalase-like activity. The driving force of the light-empowered peroxidase-like photonanozymatic activity is explicated in terms of the photogenerated hot charge carriers in TiO2 PNZs and the accompanied reactive oxygen species. The co-substrates for photonanozymatic reaction over TiO2 PNZs facilitate the formation of the precarious and reactive peroxo-oxygen bridge between TiO2 and H2O2, enabling the catalytic specificity. With the TiO2 PNZ-based biosensing platform for visual glucose detection exemplifying the concept of the application of PNZs, this work may evoke more inspirations to explore strategies for enlarging the scope of photoenzyme mimics.

Electronic Supplementary Material

Download File(s)
12274_2022_4538_MOESM1_ESM.pdf (1.7 MB)

References

1

Sheldon, R. A.; Woodley, J. M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 2018, 118, 801–838.

2

Bornscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.; Lutz, S.; Moore, J. C.; Robins, K. Engineering the third wave of biocatalysis. Nature 2012, 485, 185–194.

3

Gröger, H.; Hummel, W. Combining the ‘two worlds’ of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media. Curr. Opin. Chem. Biol. 2014, 19, 171–179.

4

Ellis, L. D.; Rorrer, N. A.; Sullivan, K. P.; Otto, M.; McGeehan, J. E.; Román-Leshkov, Y.; Wierckx, N.; Beckham, G. T. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 2021, 4, 539–556.

5

Rudroff, F.; Mihovilovic, M. D.; Gröger, H.; Snajdrova, R.; Iding, H.; Bornscheuer, U. T. Opportunities and challenges for combining chemo- and biocatalysis. Nat. Catal. 2018, 1, 12–22.

6

Marzo, L.; Pagire, S. K.; Reiser, O.; Konig, B. Visible-light photocatalysis: Does it make a difference in organic synthesis. Angew. Chem., Int. Ed. 2018, 57, 10034–10072.

7

Qiu, X. Y.; Zhang, Y.; Zhu, Y. F.; Long, C.; Su, L. N.; Liu, S. Q.; Tang, Z. Y. Applications of nanomaterials in asymmetric photocatalysis: Recent progress, challenges, and opportunities. Adv. Mater. 2021, 33, 2001731.

8

Begley, T. P. Photoenzymes: A novel class of biological catalysts. Acc. Chem. Res. 1994, 27, 394–401.

9

Sancar, A. Mechanisms of DNA repair by photolyase and excision nuclease (Nobel lecture). Angew. Chem., Int. Ed. 2016, 55, 8502–8527.

10

Zhang, S. W.; Heyes, D. J.; Feng, L. L.; Sun, W. L.; Johannissen, L. O.; Liu, H. T.; Levy, C. W.; Li, X. M.; Yang, J.; Yu, X. L. et al. Structural basis for enzymatic photocatalysis in chlorophyll biosynthesis. Nature 2019, 574, 722–725.

11

Sorigué, D.; Légeret, B.; Cuiné, S.; Blangy, S.; Moulin, S.; Billon, E.; Richaud, P.; Brugière, S.; Couté, Y.; Nurizzo, D. et al. An algal photoenzyme converts fatty acids to hydrocarbons. Science 2017, 357, 903–907.

12

Heyes, D. J.; Lakavath, B.; Hardman, S. J. O.; Sakuma, M.; Hedison, T. M.; Scrutton, N. S. Photochemical mechanism of light-driven fatty acid photodecarboxylase. ACS Catal. 2020, 10, 6691–6696.

13

Björn, L. O. Photoenzymes and related topics: An update. Photochem. Photobiol. 2018, 94, 459–465.

14

Schmermund, L.; Jurkaš, V.; Özgen, F. F.; Barone, G. D.; Büchsenschütz, H. C.; Winkler, C. K.; Schmidt, S.; Kourist, R.; Kroutil, W. Photo-biocatalysis: Biotransformations in the presence of light. ACS Catal. 2019, 9, 4115–4144.

15

Litman, Z. C.; Wang, Y. J.; Zhao, H. M.; Hartwig, J. F. Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature 2018, 560, 355–359.

16

Huang, X. Q.; Wang, B. J.; Wang, Y. J.; Jiang, G. D.; Feng, J. Q.; Zhao, H. M. Photoenzymatic enantioselective intermolecular radical hydroalkylation. Nature 2020, 584, 69–74.

17

Zhang, S. H.; Zhang, Y. S.; Chen, Y.; Yang, D.; Li, S. H.; Wu, Y. Z.; Sun, Y. Y.; Cheng, Y. Q.; Shi, J. F.; Jiang, Z. Y. Metal hydride-embedded titania coating to coordinate electron transfer and enzyme protection in photo-enzymatic catalysis. ACS Catal. 2021, 11, 476–483.

18

Emmanuel, M. A.; Greenberg, N. R.; Oblinsky, D. G.; Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 2016, 540, 414–417.

19

Kim, J.; Lee, S. H.; Tieves, F.; Choi, D. S.; Hollmann, F.; Paul, C. E.; Park, C. B. Biocatalytic C=C bond reduction through carbon nanodot-sensitized regeneration of NADH analogues. Angew. Chem., Int. Ed. 2018, 57, 13825–13828.

20

Lazarides, T.; Sazanovich, I. V.; Simaan, A. J.; Kafentzi, M. C.; Delor, M.; Mekmouche, Y.; Faure, B.; Réglier, M.; Weinstein, J. A.; Coutsolelos, A. G. et al. Visible light-driven O2 reduction by a porphyrin-laccase system. J. Am. Chem. Soc. 2013, 135, 3095–3103.

21

Lee, S. H.; Choi, D. S.; Pesic, M.; Lee, Y. W.; Paul, C. E.; Hollmann, F.; Park, C. B. Cofactor-free, direct photoactivation of enoate reductases for the asymmetric reduction of C=C bonds. Angew. Chem., Int. Ed. 2017, 56, 8681–8685.

22

Liu, X. H.; Kang, F. Y.; Hu, C.; Wang, L.; Xu, Z.; Zheng, D. D.; Gong, W. M.; Lu, Y.; Ma, Y. H.; Wang, J. Y. A genetically encoded photosensitizer protein facilitates the rational design of a miniature photocatalytic CO2-reducing enzyme. Nat. Chem. 2018, 10, 1201–1206.

23

Kang, F. Y.; Yu, L.; Xia, Y.; Yu, M. L.; Xia, L.; Wang, Y. C.; Yang, L.; Wang, T. Y.; Gong, W. M.; Tian, C. L. et al. Rational design of a miniature photocatalytic CO2-reducing enzyme. ACS Catal. 2021, 11, 5628–5635.

24

Wei, H.; Gao, L. Z.; Fan, K. L.; Liu, J. W.; He, J. Y.; Qu, X. G.; Dong, S. J.; Wang, E. K.; Yan, X. Y. Nanozymes: A clear definition with fuzzy edges. Nano Today 2021, 40, 101269.

25

Jiang, D. W.; Ni, D. L.; Rosenkrans, Z. T.; Huang, P.; Yan, X. Y.; Cai, W. B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704.

26

Wu, J. J. X.; Wei, H. Efficient design strategies for nanozymes. Prog. Chem. 2021, 33, 42–51.

27

Xu, X. J.; Wang, J. H.; Huang, R. L.; Qi, W.; Su, R. X.; He, Z. M. Preparation of laccase mimicking nanozymes and their catalytic oxidation of phenolic pollutants. Catal. Sci. Technol. 2021, 11, 3402–3410.

28

Zhang, L. F.; Zhang, L.; Deng, H.; Li, H.; Tang, W. T.; Guan, L. Y.; Qiu, Y.; Donovan, M. J.; Chen, Z.; Tan, W. H. In vivo activation of pH-responsive oxidase-like graphitic nanozymes for selective killing of Helicobacter pylori. Nat. Commun. 2021, 12, 2002.

29

Li, N.; He, Y. L.; Lian, J. J.; Liu, Q. Y.; Zhang, Y. X.; Zhang, X. X. Hg2+ significantly enhancing the peroxidase-like activity of H2TCPP/ZnS/CoS nanoperoxidases by inducing the formation of surface-cation defects and application for the sensitive and selective detection of Hg2+ in the environment. Inorg. Chem. 2020, 59, 18384–18395.

30

Zhou, Y. F.; Liu, C.; Yu, Y.; Yin, M.; Sun, J. L.; Huang, J.; Chen, N.; Wang, H.; Fan, C. H.; Song, H. Y. An organelle-specific nanozyme for diabetes care in genetically or diet-induced models. Adv. Mater. 2020, 32, 2003708.

31

Zhang, J. Y.; Liu, J. W. Light-activated nanozymes: Catalytic mechanisms and applications. Nanoscale 2020, 12, 2914–2923.

32

Liu, Y. F.; Wang, X. Y.; Wei, H. Light-responsive nanozymes for biosensing. Analyst 2020, 145, 4388–4397.

33

Wang, C. H.; Wang, H. Y.; Xu, B. L.; Liu, H. Y. Photo-responsive nanozymes: Mechanism, activity regulation, and biomedical applications. VIEW 2021, 2, 20200045.

34

Wang, H. Y.; Yang, W. P.; Wang, X. X.; Huang, L. N.; Zhang, Y. Y.; Yao, S. Z. A CeO2@MnO2 core-shell hollow heterojunction as glucose oxidase-like photoenzyme for photoelectrochemical sensing of glucose. Sens. Actuators B:Chem. 2020, 304, 127389.

35

Wei, Z. H.; Yu, Y. F.; Hu, S. Q.; Yi, X. Y.; Wang, J. X. Bifunctional diblock DNA-mediated synthesis of nanoflower-shaped photothermal nanozymes for a highly sensitive colorimetric assay of cancer cells. ACS Appl. Mater. Interfaces 2021, 13, 16801–16811.

36

Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.

37

Rajh, T.; Dimitrijevic, N. M.; Bissonnette, M.; Koritarov, T.; Konda, V. Titanium dioxide in the service of the biomedical revolution. Chem. Rev. 2014, 114, 10177–10216.

38

Wang, D.; Zhou, Z. H.; Yang, H.; Shen, K. B.; Huang, Y.; Shen, S. Preparation of TiO2 loaded with crystalline nano Ag by a one-step low-temperature hydrothermal method. J. Mater. Chem. 2012, 22, 16306–16311.

39

Peng, X. G.; Wan, G. P.; Wu, L. H.; Zeng, M.; Lin, S. W.; Wang, G. Z. Peroxidase-like activity of Au@TiO2 yolk-shell nanostructure and its application for colorimetric detection of H2O2 and glucose. Sens. Actuators B:Chem. 2018, 257, 166–177.

40

Chen, M.; Zhou, H.; Liu, X. K.; Yuan, T. W.; Wang, W. Y.; Zhao, C.; Zhao, Y. F.; Zhou, F. Y.; Wang, X.; Xue, Z. G. et al. Single iron site nanozyme for ultrasensitive glucose detection. Small 2020, 16, 2002343.

41

Jin, L. Y.; Dong, Y. M.; Wu, X. M.; Cao, G. X.; Wang, G. L. Versatile and amplified biosensing through enzymatic cascade reaction by coupling alkaline phosphatase in situ generation of photoresponsive nanozyme. Anal. Chem. 2015, 87, 10429–10436.

42

Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

43

Kubo, W.; Tatsuma, T. Mechanisms of photocatalytic remote oxidation. J. Am. Chem. Soc. 2006, 128, 16034–16035.

44

Di Valentin, C.; Pacchioni, G.; Selloni, A. Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces. Phys. Rev. Lett. 2006, 97, 166803.

45

Nosaka, Y.; Nosaka, A. Understanding hydroxyl radical (·OH) generation processes in photocatalysis. ACS Energy Lett. 2016, 1, 356–359.

46

Park, H.; Goto, T.; Cho, S.; Nishida, H.; Sekino, T. Enhancing visible light absorption of yellow-colored peroxo-titanate nanotubes prepared using peroxo titanium complex ions. ACS Omega 2020, 5, 21753–21761.

47

Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

48

Shen, X. M.; Wang, Z. Z.; Gao, X. F.; Zhao, Y. L. Density functional theory-based method to predict the activities of nanomaterials as peroxidase mimics. ACS Catal. 2020, 10, 12657–12665.

49

Lei, Y. H.; Huang, X.; Zhao, C. M.; Jin, Y. J.; Xu, H. The effect of DMPO on the formation of hydroxyl radicals on the rutile TiO2(110) surface. Phys. Chem. Chem. Phys. 2020, 22, 13129–13135.

50

Zheng, J. H.; Zhang, L. Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability. Appl. Catal. B:Environ. 2018, 237, 1–8.

51

Zhang, C. Y.; Jia, F. C.; Li, Z. Y.; Huang, X.; Lu, G. Plasmon-generated hot holes for chemical reactions. Nano Res. 2020, 13, 3183–3197.

52

Imanishi, A.; Okamura, T.; Ohashi, N.; Nakamura, R.; Nakato, Y. Mechanism of water photooxidation reaction at atomically flat TiO2 (rutile) (110) and (100) surfaces: Dependence on solution pH. J. Am. Chem. Soc. 2007, 129, 11569–11578.

53

Liu, Q.; Wan, K. W.; Shang, Y. X.; Wang, Z. G.; Zhang, Y. Y.; Dai, L. R.; Wang, C.; Wang, H.; Shi, X. H.; Liu, D. S. et al. Cofactor-free oxidase-mimetic nanomaterials from self-assembled histidine-rich peptides. Nat. Mater. 2021, 20, 395–402.

54

Ohno, T.; Masaki, Y.; Hirayama, S.; Matsumura, M. TiO2-photocatalyzed epoxidation of 1-decene by H2O2 under visible light. J. Catal. 2001, 204, 163–168.

55

Salvador, P. On the nature of photogenerated radical species active in the oxidative degradation of dissolved pollutants with TiO2 aqueous suspensions: A revision in the light of the electronic structure of adsorbed water. J. Phys. Chem. C 2007, 111, 17038–17043.

56

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

57

Wei, H.; Wang, E. K. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 2008, 80, 2250–2254.

Nano Research
Pages 9073-9081
Cite this article:
Lin S, Tan W, Han P, et al. A photonanozyme with light-empowered specific peroxidase-mimicking activity. Nano Research, 2022, 15(10): 9073-9081. https://doi.org/10.1007/s12274-022-4538-5
Topics:

1771

Views

19

Crossref

19

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 11 April 2022
Revised: 13 May 2022
Accepted: 15 May 2022
Published: 25 June 2022
© Tsinghua University Press 2022
Return