AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Boosting SN38-based oral chemotherapy to combine reduction-bioactivated structured lipid-mimetic prodrug with ascorbic acid

Helin Wang1,§Qi Lu1,§Yifan Miao1Jiaxuan Song1Mingyang Zhang1Zixuan Wang1Haotian Zhang2Zhonggui He1Chutong Tian1( )Jin Sun1( )
Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China

§ Helin Wang and Qi Lu contributed equally to this work.

Show Author Information
An erratum to this article is available online at:

Graphical Abstract

A structured lipid-mimetic SN38 prodrug for smart cancer therapy by combination of the high hydrophobic structured lipid-mimetic prodrug structure and disulfide bond was designed. And ascorbic acid (ASC) was co-administrated to further promote the efficient release of SN38 from the prodrug. The combination of structured lipid-mimetic prodrug along with ASC is firstly demonstrated to boost the oral chemotherapy effect of the difficult-for-oral chemotherapeutics.

Abstract

The reduction-responsive disulfide bonds have been widely used as bioactive linkages to facilitate a rapid release of anticancer drugs into tumor cells. However, the activation can be hindered by the kinetics of the thiol-disulfide exchange reactions. Supplementing with an additional reductant is a promising strategy to further boost drug release. Herein, inspired by the specific absorption mechanism of triglyceride fat, structured lipid-mimetic oral prodrugs of 7-ethyl-10-hydroxycamptothecin (SN38) were designed to improve intestinal permeability and bypass the first-pass effect. SN38 prodrugs were prepared into lipid formulations that could self-emulsify into nano-sized particles after entering the gastrointestinal tract. Surprisingly, we found that the oral bioavailability of the prodrug lipid formulation could be up to 2.69-fold higher than that of the parent SN38, indicating an effective oral delivery. In addition, the reduction-responsive disulfide bond was used as a linker, and ascorbic acid (ASC) was coadministrated to further promote the efficient release of SN38 from the prodrug. ASC enhanced the oral antitumor effect of the reduction-responsive oral prodrug and exhibited good safety. In summary, the combination of a structured lipid-mimetic prodrug and ASC was firstly demonstrated to boost the oral chemotherapy effect of the difficult-for-oral chemotherapeutics.

Electronic Supplementary Material

Download File(s)
12274_2022_4544_MOESM1_ESM.pdf (1.5 MB)

References

1
Rothenberg, M. L. CPT-11: An original spectrum of clinical activity. Semin. Oncol. 1996, 23, 21–26.
2
Mathijssen, R. H. J. ; van Alphen, R. J. ; Verweij, J. ; Loos, W. J. ; Nooter, K. ; Stoter, G. ; Sparreboom, A. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res. 2001, 7, 2182–2194.
3
Kawato, Y. ; Aonuma, M. ; Hirota, Y. ; Kuga, H. ; Sato, K. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 1991, 51, 4187–4191.
4

Innocenti, F.; Kroetz, D. L.; Schuetz, E.; Dolan, M. E.; Ramírez, J.; Relling, M.; Chen, P. X.; Das, S.; Rosner, G. L.; Ratain, M. J. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J. Clin. Oncol. 2009, 27, 2604–2614.

5

Hoskins, J. M.; Goldberg, R. M.; Qu, P. P.; Ibrahim, J. G.; McLeod, H. L. UGT1A1*28 genotype and irinotecan-induced neutropenia: Dose matters. J. Natl. Cancer Inst. 2007, 99, 1290–1295.

6

Guo, M.; Rong, W. T.; Hou, J.; Wang, D. F.; Lu, Y.; Wang, Y.; Yu, S. Q.; Xu, Q. Mechanisms of chitosan-coated poly(lactic-co-glycolic acid) nanoparticles for improving oral absorption of 7-ethyl-10-hydroxycamptothecin. Nanotechnology 2013, 24, 245101.

7

Mei, L.; Zhang, Z. P.; Zhao, L. Y.; Huang, L. Q.; Yang, X. L.; Tang, J. T.; Feng, S. S. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv. Drug Deliv. Rev. 2013, 65, 880–890.

8

Banna, G. L.; Collovà, E.; Gebbia, V.; Lipari, H.; Giuffrida, P.; Cavallaro, S.; Condorelli, R.; Buscarino, C.; Tralongo, P.; Ferraù, F. Anticancer oral therapy: Emerging related issues. Cancer Treat. Rev. 2010, 36, 595–605.

9

Roger, E.; Lagarce, F.; Benoit, J. P. Development and characterization of a novel lipid nanocapsule formulation of Sn38 for oral administration. Eur. J. Pharm. Biopharm. 2011, 79, 181–188.

10

Tagen, M. ; Zhuang, Y. L. ; Zhang, F. ; Harstead, K. E. ; Shen, J. ; Schaiquevich, P. ; Fraga, C. H. ; Panetta, J. C. ; Waters, C. M. ; Stewart, C. F. P-glycoprotein, but not multidrug resistance protein 4, plays a role in the systemic clearance of irinotecan and SN-38 in mice. Drug Metab. Lett. 2010, 4, 195–201.

11

Wang H. L.; Sun J.; Tian C. T.; He Z. G. Probing the new strategy for the oral formulations of taxanes:changing the method with the situation. Chin. J. Nat. Medicines 2021, 19, 656–665.

12

Le Garrec, D.; Benquet, C.; Lessard, D.; Parisien, M.; Palusova, D.; Kujawa, P.; Baille, W.; Nasser-Eddine, M.; Smith, D. Abstract C218: Antitumor activities of a novel oral formulation of SN38. Mol. Cancer Ther. 2009, 8, C218.

13

Goldberg, D. S.; Vijayalakshmi, N.; Swaan, P. W.; Ghandehari, H. G3. 5 PAMAM dendrimers enhance transepithelial transport of SN38 while minimizing gastrointestinal toxicity. J. Control. Release 2011, 150, 318–325.

14

Bala, V.; Rao, S. S.; Bateman, E.; Keefe, D.; Wang, S. D.; Prestidge, C. A. Enabling oral SN38-based chemotherapy with a combined lipophilic prodrug and self-microemulsifying drug delivery system. Mol. Pharm. 2016, 13, 3518–3525.

15

Tian, C. T.; Guo, J. J.; Wang, G.; Sun, B. J.; Na, K. X.; Zhang, X. B.; Xu, Z. Y.; Cheng, M. S.; He, Z. G.; Sun, J. Efficient intestinal digestion and on site tumor-bioactivation are the two important determinants for chylomicron-mediated lymph-targeting triglyceride-mimetic docetaxel oral prodrugs. Adv. Sci. (Weinh.) 2019, 6, 1901810.

16

Hu, L. J.; Quach, T.; Han, S. F.; Lim, S. F.; Yadav, P.; Senyschyn, D.; Trevaskis, N. L.; Simpson, J. S.; Porter, C. J. H. Glyceride-mimetic prodrugs incorporating self-immolative spacers promote lymphatic transport, avoid first-pass metabolism, and enhance oral bioavailability. Angew. Chem., Int. Ed. 2016, 55, 13700–13705.

17

Harvey, C. J. D. C.; Schofield, G. M.; Williden, M.; McQuillan, J. A. The effect of medium chain triglycerides on time to nutritional ketosis and symptoms of keto-induction in healthy adults: A randomised controlled clinical trial. J. Nutr. Metab. 2018, 2018, 2630565.

18

Odle, J. New insights into the utilization of medium-chain triglycerides by the neonate: Observations from a piglet model. J. Nutr. 1997, 127, 1061–1067.

19

Wang, Y. Y.; Xia, L.; Xu, X. B.; Xie, L.; Duan, Z. Q. Lipase-catalyzed acidolysis of canola oil with caprylic acid to produce medium-, long- and medium-chain-type structured lipids. Food Bioprod. Process. 2012, 90, 707–712.

20

Wang, Y. D.; Cao, M. J.; Liu, R. J.; Chang, M.; Wei, W.; Jin, Q. Z.; Wang, X. G. The enzymatic synthesis of EPA-rich medium- and long-chain triacylglycerol improves the digestion behavior of MCFA and EPA: Evidence on in vitro digestion. Food Funct. 2022, 13, 131–142.

21

Caballero, E.; Soto, C.; Olivares, A.; Altamirano, C. Potential use of avocado oil on structured lipids MLM-type production catalysed by commercial immobilised lipases. PLoS One 2014, 9, e107749.

22

Mu, H. L.; Porsgaard, T. The metabolism of structured triacylglycerols. Prog. Lipid Res. 2005, 44, 430–448.

23

Yang, B.; Wei, L.; Wang, Y. Q.; Li, N.; Ji, B.; Wang, K. Y.; Zhang, X. B.; Zhang, S. W.; Zhou, S.; Yao, X. H. et al. Oxidation-strengthened disulfide-bridged prodrug nanoplatforms with cascade facilitated drug release for synergetic photochemotherapy. Asian J. Pharm. Sci. 2020, 15, 637–645.

24

Han, L.; Zhang, X. Y.; Wang, Y. L.; Li, X.; Yang, X. H.; Huang, M.; Hu, K.; Li, L. H.; Wei, Y. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials. J. Control. Release 2017, 259, 40–52.

25

Fass, D.; Thorpe, C. Chemistry and enzymology of disulfide cross-linking in proteins. Chem. Rev. 2018, 118, 1169–1198.

26

Li, L. X.; Zuo, S. Y.; Dong, F. D.; Liu, T.; Gao, Y. L.; Yang, Y. X.; Wang, X.; Sun, J.; Sun, B. J.; He, Z. G. Small changes in the length of diselenide bond-containing linkages exert great influences on the antitumor activity of docetaxel homodimeric prodrug nanoassemblies. Asian J. Pharm. Sci. 2021, 16, 337–349.

27

Gokce, N. ; Keaney, J. F. Jr. ; Frei, B. ; Holbrook, M. ; Olesiak, M. ; Zachariah, B. J. ; Leeuwenburgh, C. ; Heinecke, J. W. ; Vita, J. A. Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1999, 99, 3234–3240.

28

Meister, A. Glutathione-ascorbic acid antioxidant system in animals. J. Biol. Chem. 1994, 269, 9397–9400.

29

Meister, A. On the antioxidant effects of ascorbic acid and glutathione. Biochem. Pharmacol. 1992, 44, 1905–1915.

30

Giustarini, D.; Dalle-Donne, I.; Colombo, R.; Milzani, A.; Rossi, R. Is ascorbate able to reduce disulfide bridges. A cautionary note. Nitric Oxide 2008, 19, 252–258.

31

Landino, L. M.; Koumas, M. T.; Mason, C. E.; Alston, J. A. Ascorbic acid reduction of microtubule protein disulfides and its relevance to protein S-nitrosylation assays. Biochem. Biophys. Res. Commun. 2006, 340, 347–352.

32

Zhu, Y. Q.; Wang, X. X.; Zhang, J.; Meng, F. H.; Deng, C.; Cheng, R.; Feijen, J.; Zhong, Z. Y. Exogenous vitamin C boosts the antitumor efficacy of paclitaxel containing reduction-sensitive shell-sheddable micelles in vivo. J. Control. Release 2017, 250, 9–19.

33

Levan, V. H.; Green, G. M. Effect of diversion of bile-pancreatic juice to the ileum on pancreatic secretion and adaptation in the rat. Proc. Soc. Exp. Biol. Med. 1986, 181, 139–143.

34

Fritz, H.; Flower, G.; Weeks, L.; Cooley, K.; Callachan, M.; McGowan, J.; Skidmore, B.; Kirchner, L.; Seely, D. Intravenous vitamin C and cancer: A systematic review. Integr. Cancer Ther. 2014, 13, 280–300.

35

Yang, Y. X.; Sun, B. J.; Zuo, S. Y.; Li, X. M.; Zhou, S.; Li, L. X.; Luo, C.; Liu, H. Z.; Cheng, M. S.; Wang, Y. J. et al. Trisulfide bond-mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Sci. Adv. 2020, 6, eabc1725.

36

Ste Marie, E. J.; Hondal, R. J. 2,2'-Dipyridyl diselenide: A chemoselective tool for cysteine deprotection and disulfide bond formation. J Pept Sci. 2020, 26, e3236.

37

Lamson, N. G.; Berger, A.; Fein, K. C.; Whitehead, K. A. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat. Biomed. Eng. 2020, 4, 84–96.

38

Aron, Z. D.; Mehrani, A.; Hoffer, E. D.; Connolly, K. L.; Srinivas, P.; Torhan, M. C.; Alumasa, J. N.; Cabrera, M.; Hosangadi, D.; Barbor, J. S. et al. trans-Translation inhibitors bind to a novel site on the ribosome and clear Neisseria gonorrhoeaein vivo. Nat. Commun. 2021, 12, 1799.

39

Artursson, P.; Palm, K.; Luthman, K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 2012, 64, 280–289.

40

An, Y.; Zhu, J. D.; Liu, F.; Deng, J.; Meng, X.; Liu, G. Q.; Wu, H. Y.; Fan, A. P.; Wang, Z.; Zhao, Y. J. Boosting the ferroptotic antitumor efficacy via site-specific amplification of tailored lipid peroxidation. ACS Appl. Mater. Interfaces 2019, 11, 29655–29666.

Nano Research
Pages 9092-9104
Cite this article:
Wang H, Lu Q, Miao Y, et al. Boosting SN38-based oral chemotherapy to combine reduction-bioactivated structured lipid-mimetic prodrug with ascorbic acid. Nano Research, 2022, 15(10): 9092-9104. https://doi.org/10.1007/s12274-022-4544-7
Topics:

1179

Views

8

Crossref

9

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 21 February 2022
Revised: 10 May 2022
Accepted: 16 May 2022
Published: 15 July 2022
© Tsinghua University Press 2022
Return