Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The reduction-responsive disulfide bonds have been widely used as bioactive linkages to facilitate a rapid release of anticancer drugs into tumor cells. However, the activation can be hindered by the kinetics of the thiol-disulfide exchange reactions. Supplementing with an additional reductant is a promising strategy to further boost drug release. Herein, inspired by the specific absorption mechanism of triglyceride fat, structured lipid-mimetic oral prodrugs of 7-ethyl-10-hydroxycamptothecin (SN38) were designed to improve intestinal permeability and bypass the first-pass effect. SN38 prodrugs were prepared into lipid formulations that could self-emulsify into nano-sized particles after entering the gastrointestinal tract. Surprisingly, we found that the oral bioavailability of the prodrug lipid formulation could be up to 2.69-fold higher than that of the parent SN38, indicating an effective oral delivery. In addition, the reduction-responsive disulfide bond was used as a linker, and ascorbic acid (ASC) was coadministrated to further promote the efficient release of SN38 from the prodrug. ASC enhanced the oral antitumor effect of the reduction-responsive oral prodrug and exhibited good safety. In summary, the combination of a structured lipid-mimetic prodrug and ASC was firstly demonstrated to boost the oral chemotherapy effect of the difficult-for-oral chemotherapeutics.
Innocenti, F.; Kroetz, D. L.; Schuetz, E.; Dolan, M. E.; Ramírez, J.; Relling, M.; Chen, P. X.; Das, S.; Rosner, G. L.; Ratain, M. J. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J. Clin. Oncol. 2009, 27, 2604–2614.
Hoskins, J. M.; Goldberg, R. M.; Qu, P. P.; Ibrahim, J. G.; McLeod, H. L. UGT1A1*28 genotype and irinotecan-induced neutropenia: Dose matters. J. Natl. Cancer Inst. 2007, 99, 1290–1295.
Guo, M.; Rong, W. T.; Hou, J.; Wang, D. F.; Lu, Y.; Wang, Y.; Yu, S. Q.; Xu, Q. Mechanisms of chitosan-coated poly(lactic-co-glycolic acid) nanoparticles for improving oral absorption of 7-ethyl-10-hydroxycamptothecin. Nanotechnology 2013, 24, 245101.
Mei, L.; Zhang, Z. P.; Zhao, L. Y.; Huang, L. Q.; Yang, X. L.; Tang, J. T.; Feng, S. S. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv. Drug Deliv. Rev. 2013, 65, 880–890.
Banna, G. L.; Collovà, E.; Gebbia, V.; Lipari, H.; Giuffrida, P.; Cavallaro, S.; Condorelli, R.; Buscarino, C.; Tralongo, P.; Ferraù, F. Anticancer oral therapy: Emerging related issues. Cancer Treat. Rev. 2010, 36, 595–605.
Roger, E.; Lagarce, F.; Benoit, J. P. Development and characterization of a novel lipid nanocapsule formulation of Sn38 for oral administration. Eur. J. Pharm. Biopharm. 2011, 79, 181–188.
Tagen, M. ; Zhuang, Y. L. ; Zhang, F. ; Harstead, K. E. ; Shen, J. ; Schaiquevich, P. ; Fraga, C. H. ; Panetta, J. C. ; Waters, C. M. ; Stewart, C. F. P-glycoprotein, but not multidrug resistance protein 4, plays a role in the systemic clearance of irinotecan and SN-38 in mice. Drug Metab. Lett. 2010, 4, 195–201.
Wang H. L.; Sun J.; Tian C. T.; He Z. G. Probing the new strategy for the oral formulations of taxanes:changing the method with the situation. Chin. J. Nat. Medicines 2021, 19, 656–665.
Le Garrec, D.; Benquet, C.; Lessard, D.; Parisien, M.; Palusova, D.; Kujawa, P.; Baille, W.; Nasser-Eddine, M.; Smith, D. Abstract C218: Antitumor activities of a novel oral formulation of SN38. Mol. Cancer Ther. 2009, 8, C218.
Goldberg, D. S.; Vijayalakshmi, N.; Swaan, P. W.; Ghandehari, H. G3. 5 PAMAM dendrimers enhance transepithelial transport of SN38 while minimizing gastrointestinal toxicity. J. Control. Release 2011, 150, 318–325.
Bala, V.; Rao, S. S.; Bateman, E.; Keefe, D.; Wang, S. D.; Prestidge, C. A. Enabling oral SN38-based chemotherapy with a combined lipophilic prodrug and self-microemulsifying drug delivery system. Mol. Pharm. 2016, 13, 3518–3525.
Tian, C. T.; Guo, J. J.; Wang, G.; Sun, B. J.; Na, K. X.; Zhang, X. B.; Xu, Z. Y.; Cheng, M. S.; He, Z. G.; Sun, J. Efficient intestinal digestion and on site tumor-bioactivation are the two important determinants for chylomicron-mediated lymph-targeting triglyceride-mimetic docetaxel oral prodrugs. Adv. Sci. (Weinh.) 2019, 6, 1901810.
Hu, L. J.; Quach, T.; Han, S. F.; Lim, S. F.; Yadav, P.; Senyschyn, D.; Trevaskis, N. L.; Simpson, J. S.; Porter, C. J. H. Glyceride-mimetic prodrugs incorporating self-immolative spacers promote lymphatic transport, avoid first-pass metabolism, and enhance oral bioavailability. Angew. Chem., Int. Ed. 2016, 55, 13700–13705.
Harvey, C. J. D. C.; Schofield, G. M.; Williden, M.; McQuillan, J. A. The effect of medium chain triglycerides on time to nutritional ketosis and symptoms of keto-induction in healthy adults: A randomised controlled clinical trial. J. Nutr. Metab. 2018, 2018, 2630565.
Odle, J. New insights into the utilization of medium-chain triglycerides by the neonate: Observations from a piglet model. J. Nutr. 1997, 127, 1061–1067.
Wang, Y. Y.; Xia, L.; Xu, X. B.; Xie, L.; Duan, Z. Q. Lipase-catalyzed acidolysis of canola oil with caprylic acid to produce medium-, long- and medium-chain-type structured lipids. Food Bioprod. Process. 2012, 90, 707–712.
Wang, Y. D.; Cao, M. J.; Liu, R. J.; Chang, M.; Wei, W.; Jin, Q. Z.; Wang, X. G. The enzymatic synthesis of EPA-rich medium- and long-chain triacylglycerol improves the digestion behavior of MCFA and EPA: Evidence on in vitro digestion. Food Funct. 2022, 13, 131–142.
Caballero, E.; Soto, C.; Olivares, A.; Altamirano, C. Potential use of avocado oil on structured lipids MLM-type production catalysed by commercial immobilised lipases. PLoS One 2014, 9, e107749.
Mu, H. L.; Porsgaard, T. The metabolism of structured triacylglycerols. Prog. Lipid Res. 2005, 44, 430–448.
Yang, B.; Wei, L.; Wang, Y. Q.; Li, N.; Ji, B.; Wang, K. Y.; Zhang, X. B.; Zhang, S. W.; Zhou, S.; Yao, X. H. et al. Oxidation-strengthened disulfide-bridged prodrug nanoplatforms with cascade facilitated drug release for synergetic photochemotherapy. Asian J. Pharm. Sci. 2020, 15, 637–645.
Han, L.; Zhang, X. Y.; Wang, Y. L.; Li, X.; Yang, X. H.; Huang, M.; Hu, K.; Li, L. H.; Wei, Y. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials. J. Control. Release 2017, 259, 40–52.
Fass, D.; Thorpe, C. Chemistry and enzymology of disulfide cross-linking in proteins. Chem. Rev. 2018, 118, 1169–1198.
Li, L. X.; Zuo, S. Y.; Dong, F. D.; Liu, T.; Gao, Y. L.; Yang, Y. X.; Wang, X.; Sun, J.; Sun, B. J.; He, Z. G. Small changes in the length of diselenide bond-containing linkages exert great influences on the antitumor activity of docetaxel homodimeric prodrug nanoassemblies. Asian J. Pharm. Sci. 2021, 16, 337–349.
Gokce, N. ; Keaney, J. F. Jr. ; Frei, B. ; Holbrook, M. ; Olesiak, M. ; Zachariah, B. J. ; Leeuwenburgh, C. ; Heinecke, J. W. ; Vita, J. A. Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1999, 99, 3234–3240.
Meister, A. Glutathione-ascorbic acid antioxidant system in animals. J. Biol. Chem. 1994, 269, 9397–9400.
Meister, A. On the antioxidant effects of ascorbic acid and glutathione. Biochem. Pharmacol. 1992, 44, 1905–1915.
Giustarini, D.; Dalle-Donne, I.; Colombo, R.; Milzani, A.; Rossi, R. Is ascorbate able to reduce disulfide bridges. A cautionary note. Nitric Oxide 2008, 19, 252–258.
Landino, L. M.; Koumas, M. T.; Mason, C. E.; Alston, J. A. Ascorbic acid reduction of microtubule protein disulfides and its relevance to protein S-nitrosylation assays. Biochem. Biophys. Res. Commun. 2006, 340, 347–352.
Zhu, Y. Q.; Wang, X. X.; Zhang, J.; Meng, F. H.; Deng, C.; Cheng, R.; Feijen, J.; Zhong, Z. Y. Exogenous vitamin C boosts the antitumor efficacy of paclitaxel containing reduction-sensitive shell-sheddable micelles in vivo. J. Control. Release 2017, 250, 9–19.
Levan, V. H.; Green, G. M. Effect of diversion of bile-pancreatic juice to the ileum on pancreatic secretion and adaptation in the rat. Proc. Soc. Exp. Biol. Med. 1986, 181, 139–143.
Fritz, H.; Flower, G.; Weeks, L.; Cooley, K.; Callachan, M.; McGowan, J.; Skidmore, B.; Kirchner, L.; Seely, D. Intravenous vitamin C and cancer: A systematic review. Integr. Cancer Ther. 2014, 13, 280–300.
Yang, Y. X.; Sun, B. J.; Zuo, S. Y.; Li, X. M.; Zhou, S.; Li, L. X.; Luo, C.; Liu, H. Z.; Cheng, M. S.; Wang, Y. J. et al. Trisulfide bond-mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Sci. Adv. 2020, 6, eabc1725.
Ste Marie, E. J.; Hondal, R. J. 2,2'-Dipyridyl diselenide: A chemoselective tool for cysteine deprotection and disulfide bond formation. J Pept Sci. 2020, 26, e3236.
Lamson, N. G.; Berger, A.; Fein, K. C.; Whitehead, K. A. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat. Biomed. Eng. 2020, 4, 84–96.
Aron, Z. D.; Mehrani, A.; Hoffer, E. D.; Connolly, K. L.; Srinivas, P.; Torhan, M. C.; Alumasa, J. N.; Cabrera, M.; Hosangadi, D.; Barbor, J. S. et al. trans-Translation inhibitors bind to a novel site on the ribosome and clear Neisseria gonorrhoeaein vivo. Nat. Commun. 2021, 12, 1799.
Artursson, P.; Palm, K.; Luthman, K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 2012, 64, 280–289.
An, Y.; Zhu, J. D.; Liu, F.; Deng, J.; Meng, X.; Liu, G. Q.; Wu, H. Y.; Fan, A. P.; Wang, Z.; Zhao, Y. J. Boosting the ferroptotic antitumor efficacy via site-specific amplification of tailored lipid peroxidation. ACS Appl. Mater. Interfaces 2019, 11, 29655–29666.