AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Hydrogen spillover in nonreducible oxides: Mechanism and catalytic utilization

Songhyun Lee1,Hyungjun Kim2Ryong Ryoo2,3Jeong Young Park2,4Minkee Choi1( )
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
KENTECH Laboratory for Chemical, Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju 58330, Republic of Korea
Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
Present address: Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Show Author Information

Graphical Abstract

Mechanism of hydrogen (H) spillover in nonreducible oxides and the opportunities of harnessing H spillover for designing advanced hydroprocessing catalysts are discussed.

Abstract

Hydrogen (H) spillover in nonreducible oxides such as zeolites and Al2O3 has been a highly controversial phenomenon in heterogeneous catalysis. Since industrial catalysts are predominantly prepared using these materials as supports, it is important to understand the mechanism and catalytic functions of H spillover on their surfaces. In the past decade, fundamental studies on zeolite-encapsulated metal catalysts have revealed that H spillover and reverse spillover can be utilized in the design of hydrogenation and dehydrogenation catalysts with improved properties. Both experimental and theoretical studies have indicated that H spillover can occur in nonreducible oxides when they possess substantial acid sites that aid the surface migration of active H. In the present review, we will discuss the possible mechanisms of H spillover in nonreducible oxides and the unique opportunities of using this phenomenon for the design of advanced hydroprocessing catalysts.

References

[1]

Conner, W. C. Jr.; Falconer, J. L. Spillover in heterogeneous catalysis. Chem. Rev. 1995, 95, 759–788.

[2]

Roland, U.; Braunschweig, T.; Roessner, F. On the nature of spilt-over hydrogen. J. Mol. Catal. A Chem. 1997, 127, 61–84.

[3]

Prins, R. Hydrogen spillover. Facts and fiction. Chem. Rev. 2012, 112, 2714–2738.

[4]

Karim, W.; Spreafico, C.; Kleibert, A.; Gobrecht, J.; VandeVondele, J.; Ekinci, Y.; Van Bokhoven, J. A. Catalyst support effects on hydrogen spillover. Nature 2017, 541, 68–71.

[5]
Kuriacose, J. Ind. J. Chem. 1957, 5, 646.
[6]

Taylor, H. Surface catalysis. Annu. Rev. Phys. Chem. 1961, 12, 127–150.

[7]

Khoobiar, S. Particle to particle migration of hydrogen atoms on platinum—Alumina catalysts from particle to neighboring particles. J. Phys. Chem. 1964, 68, 411–412.

[8]

Benson, J. E.; Kohn, H. W.; Boudart, M. On the reduction of tungsten trioxide accelerated by platinum and water. J. Catal. 1966, 5, 307–313.

[9]

Levy, R. B.; Boudart, M. The kinetics and mechanism of spillover. J. Catal. 1974, 32, 304–314.

[10]

Corma, A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev. 1995, 95, 559–614.

[11]

Weisz, P. B.; Swegler, E. W. Stepwise reaction on separate catalytic centers: Isomerization of saturated hydrocarbons. Science 1957, 126, 31–32.

[12]

Triwahyono, S.; Jalil, A. A.; Timmiati, S. N.; Ruslan, N. N.; Hattori, H. Kinetics study of hydrogen adsorption over Pt/MoO3. Appl. Catal. A Gen. 2010, 372, 103–107.

[13]

Huizinga, T.; Prins, R. Behavior of titanium (3+) centers in the low-and high-temperature reduction of platinum/titanium dioxide, studied by ESR. J. Phys. Chem. 1981, 85, 2156–2158.

[14]

Karna, S. P.; Pugh, R. D.; Shedd, W. M.; Singaraju, B. B. K. Interaction of H+/H0 with O atoms in thin SiO2 films: A first-principles quantum mechanical study. J. Non-Cryst. Solids 1999, 254, 66–73.

[15]

Prins, R.; Palfi, V. K.; Reiher, M. Hydrogen spillover to nonreducible supports. J. Phys. Chem. C 2012, 116, 14274–14283.

[16]

Ahmed, F.; Alam, M. K.; Suzuki, A.; Koyama, M.; Tsuboi, H.; Hatakeyama, N.; Endou, A.; Takaba, H.; Del Carpio, C. A.; Kubo, M. et al. Dynamics of hydrogen spillover on Pt/γ-Al2O3 catalyst surface: A quantum chemical molecular dynamics study. J. Phys. Chem. C 2009, 113, 15676–15683.

[17]

Narayanan, B.; Zhao, Y. F.; Ciobanu, C. V. Migration mechanism for atomic hydrogen in porous carbon materials. Appl. Phys. Lett. 2012, 100, 203901.

[18]

Psofogiannakis, G. M.; Froudakis, G. E. DFT study of hydrogen storage by spillover on graphite with oxygen surface groups. J. Am. Chem. Soc. 2009, 131, 15133–15135.

[19]

Yang, F. H.; Lachawiec, A. J.; Yang, R. T. Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes. J. Phys. Chem. B 2006, 110, 6236–6244.

[20]

Sha, X. W.; Knippenberg, M. T.; Cooper, A. C.; Pez, G. P.; Cheng, H. S. Dynamics of hydrogen spillover on carbon-based materials. J. Phys. Chem. C 2008, 112, 17465–17470.

[21]

Han, S. S.; Kim, H.; Park, N. Effect of shuttling catalyst on the migration of hydrogen adatoms: A strategy for the facile hydrogenation of graphene. J. Phys. Chem. C 2011, 115, 24696–24701.

[22]

Roessner, F.; Roland, U. Hydrogen spillover in bifunctional catalysis. J. Mol. Catal. A Chem. 1996, 112, 401–412.

[23]

Carter, J. L.; Lucchesi, P. J.; Corneil, P.; Yates, D. J. C.; Sinfelt, J. H. Exchange of deuterium with the hydroxyl groups of alumina. J. Phys. Chem. 1965, 69, 3070–3074.

[24]

Cavanagh, R. R.; Yates, J. T. Jr. Hydrogen spillover on alumina—A study by infrared spectroscopy. J. Catal. 1981, 68, 22–26.

[25]

Dmitriev, R. V.; Detjuk, A. N.; Minachev, C. M.; Steinberg, K. H. Investigation of hydrogen spillover on metal containing catalysts by isotopic exchange. Stud. Surf. Sci. Catal. 1983, 17, 17–29.

[26]

Salzer, R.; Dressler, J.; Steinberg, K. H.; Roland, U.; Winkler, H.; Klaeboe, P. Fourier transform infrared (DRIFT) investigation of glass-covered samples. Study of hydrogen spillover on zeolites. Vib. Spectrosc. 1991, 1, 363–369.

[27]

Sheng, T. C.; Gay, I. D. Proton magnetic resonance of hydrogen adsorbed on supported platinum catalysts. J. Catal. 1981, 71, 119–126.

[28]

Sheng, T. C.; Gay, I. D. Proton resonance of hydrogen adsorbed on supported platinum metals. J. Catal. 1982, 77, 53–56.

[29]
XiongM.GaoZ.ZhaoP.WangG. F.YanW. J.XingS. F.WangP. F.MaJ. Y.JiangZ.LiuX. C. In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivityNat. Commun.202011477310.1038/s41467-020-18567-6

Xiong, M.; Gao, Z.; Zhao, P.; Wang, G. F.; Yan, W. J.; Xing, S. F.; Wang, P. F.; Ma, J. Y.; Jiang, Z.; Liu, X. C. et al. In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity. Nat. Commun. 2020, 11, 4773.

[30]

Wang, C. T.; Guan, E. J.; Wang, L.; Chu, X. F.; Wu, Z. Y.; Zhang, J.; Yang, Z. Y.; Jiang, Y. W.; Zhang, L.; Meng, X. J. et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 2019, 141, 8482–8488.

[31]

Wang, S.; Zhao, Z. J.; Chang, X.; Zhao, J. B.; Tian, H.; Yang, C. S.; Li, M. R.; Fu, Q.; Mu, R. T.; Gong, J. L. Activation and spillover of hydrogen on sub-1 nm palladium nanoclusters confined within sodalite zeolite for the semi-hydrogenation of alkynes. Angew. Chem., Int. Ed. 2019, 58, 7668–7672.

[32]

Baumgarten, E.; Wagner, R.; Lentes-Wagner, C. Reactivity of spillover hydrogen: Reactivity of unsaturated compounds. J. Catal. 1987, 104, 307–311.

[33]

Miller, J. T.; Pei, S. Y. Hydrogenation and deuterium exchange by spillover hydrogen of ethylbenzene adsorbed on H-USY zeolite. Appl. Catal. A Gen. 1998, 168, 1–7.

[34]

Choi, M.; Wu, Z. J.; Iglesia, E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J. Am. Chem. Soc. 2010, 132, 9129–9137.

[35]

Ohgoshi, S.; Nakamura, I.; Wakushima, Y. Hydrogenation of isobutylene by spiltover hydrogen from Pt/KA-zeolite to NaY-zeolite. Stud. Surf. Sci. Catal. 1993, 77, 289–292.

[36]

Yang, H.; Chen, H.; Chen, J.; Omotoso, O.; Ring, Z. Shape selective and hydrogen spillover approach in the design of sulfur-tolerant hydrogenation catalysts. J. Catal. 2006, 243, 36–42.

[37]
Breck, D. W. Zeolite molecular sieves: Structure, chemistry and use; Wiley: New York, 1974.
[38]

Vayssilov, G. N.; Gates, B. C.; Rösch, N. Oxidation of supported rhodium clusters by support hydroxy groups. Angew. Chem., Int. Ed. 2003, 42, 1391–1394.

[39]

Vayssilov, G. N.; Rösch, N. Reverse hydrogen spillover in supported subnanosize clusters of the metals of groups 8 to 11. A computational model study. Phys. Chem. Chem. Phys. 2005, 7, 4019–4026.

[40]

Shor, E. A. I.; Nasluzov, V. A.; Shor, A. M.; Vayssilov, G. N.; Rösch, N. Reverse hydrogen spillover onto zeolite-supported metal clusters:  An embedded cluster density functional study of models M6 (M = Rh, Ir, or Au). J. Phys. Chem. C 2007, 111, 12340–12351.

[41]

Nash, M. J.; Shough, A. M.; Fickel, D. W.; Doren, D. J.; Lobo, R. F. High-temperature dehydrogenation of Brønsted acid sites in zeolites. J. Am. Chem. Soc. 2008, 130, 2460–2462.

[42]

Im, J.; Shin, H.; Jang, H.; Kim, H.; Choi, M. Maximizing the catalytic function of hydrogen spillover in platinum-encapsulated aluminosilicates with controlled nanostructures. Nat. Commun. 2014, 5, 3370.

[43]

Hosokawa, H.; Oki, K. Synthesis of nanosized A-type zeolites from sodium silicates and sodium aluminates in the presence of a crystallization inhibitor. Chem. Lett. 2003, 32, 586–587.

[44]

Somorjai, G. A.; Carrazza, J. Structure sensitivity of catalytic reactions. Ind. Eng. Chem. Fund. 1986, 25, 63–69.

[45]

Bricker, J. C. Advanced catalytic dehydrogenation technologies for production of olefins. Top. Catal. 2012, 55, 1309–1314.

[46]

Lee, S.; Lee, K.; Im, J.; Kim, H.; Choi, M. Revisiting hydrogen spillover in Pt/LTA: Effects of physical diluents having different acid site distributions. J. Catal. 2015, 325, 26–34.

[47]

Wang, Z.; Yang, F. H.; Yang, R. T. Enhanced hydrogen spillover on carbon surfaces modified by oxygen plasma. J. Phys. Chem. C 2010, 114, 1601–1609.

[48]

Mikhailov, M. N.; Mishin, I. V.; Kustov, L. M. A possible mechanism of hydrogen reverse spillover in platinum-zeolite catalysts. Catal. Lett. 2009, 128, 313–317.

[49]

Shin, H.; Choi, M.; Kim, H. A mechanistic model for hydrogen activation, spillover, and its chemical reaction in a zeolite-encapsulated Pt catalyst. Phys. Chem. Chem. Phys. 2016, 18, 7035–7041.

[50]

Sattler, J. J. H. B.; Gonzalez-Jimenez, I. D.; Luo, L.; Stears, B. A.; Malek, A.; Barton, D. G.; Kilos, B. A.; Kaminsky, M. P.; Verhoeven, T. W. G. M.; Koers, E. J. et al. Platinum-promoted Ga/Al2O3 as highly active, selective, and stable catalyst for the dehydrogenation of propane. Angew. Chem., Int. Ed. 2014, 53, 9251–9256.

[51]

Im, J.; Choi, M. Physicochemical stabilization of Pt against sintering for a dehydrogenation catalyst with high activity, selectivity, and durability. ACS Catal. 2016, 6, 2819–2826.

[52]

Kwon, H. C.; Park, Y.; Park, J. Y.; Ryoo, R.; Shin, H.; Choi, M. Catalytic interplay of Ga, Pt, and Ce on the alumina surface enabling high activity, selectivity, and stability in propane dehydrogenation. ACS Catal. 2021, 11, 10767–10777.

Nano Research
Pages 10357-10365
Cite this article:
Lee S, Kim H, Ryoo R, et al. Hydrogen spillover in nonreducible oxides: Mechanism and catalytic utilization. Nano Research, 2022, 15(12): 10357-10365. https://doi.org/10.1007/s12274-022-4546-5
Topics:
Part of a topical collection:

1255

Views

17

Crossref

19

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 12 March 2022
Revised: 13 May 2022
Accepted: 16 May 2022
Published: 16 June 2022
© Tsinghua University Press 2022
Return