AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Exosomes derived from human adipose-derived stem cells ameliorate osteoporosis through miR-335-3p/Aplnr axis

Chunhui Sheng1,§Xiaodong Guo1,§Zhuqing Wan1Xiaoqiang Bai1Hao Liu1Xiao Zhang1Ping Zhang1Yunsong Liu1Wenyue Li2( )Yongsheng Zhou1 ( )Longwei Lv1( )
National Center of Stomatology & National Clinical Research Center for Oral Disease, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Key Laboratory of Digital Stomatology, Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China

§ Chunhui Sheng and Xiaodong Guo contributed equally to this work.

Show Author Information

Graphical Abstract

Exosomes derived from human adipose-derived stem cells (hASCs) cultured in osteogenic induction medium (O-Exos) enhanced the osteogenic differentiation of bone marrow-derived stem cells (BMSCs) from ovariectomy osteoporotic mice and inhibited osteoclastogenesis which resulted in the amelioration of the osteoporotic conditions, and the engineered O-Exos constructed by transfection of miR-335-3p inhibitor into the exosomes showed a better effect. The findings indicated that the ASC-exosome-based therapy brings new possibilities for osteoporosis treatment.

Abstract

Treatment of osteoporosis is still a challenge in clinic, which leads to an increasing social burden as the aging of population. Exosomes originated from human adipose-derived stem cells (hASCs) hold promise to promote osteogenic differentiation, thus may ameliorate osteoporosis. The main purpose of this study was to investigate the novel usage of hASC-derived exosomes in the treatment of osteoporosis and their underlying mechanism. Two types of exosomes, i.e., exosomes derived from hASCs cultured in proliferation medium (P-Exos) and osteogenic induction medium (O-Exos), were obtained. As compared with P-Exos, O-Exos could promote the osteogenic differentiation of mouse bone marrow-derived stem cells (mBMSCs) from osteoporotic mice in vitro and ameliorated osteoporosis in vivo. Then, microRNA (miRNA)-335-3p was identified to be the key differentially expressed microRNA between the two exosomes by small RNA sequencing, gene overexpression and knock-down, qRT-PCR, and dual-luciferase reporter assay, and Aplnr was confirmed to be the potential target gene of miRNA-335-3p. In addition, miR-335-3p inhibitor-optimized O-Exos were established by transfection of miR-335-3p inhibitor, which significantly enhanced the osteogenic differentiation of mBMSCs in vitro, and bone density and number of trabecular bones in vivo compared with unoptimized O-Exos. Our results indicated that the ASC-exosome-based therapy brings new possibilities for osteoporosis treatment. Besides, engineered exosomes based on transfection of miRNA are a promising strategy to optimize the therapeutic effect of exosomes on osteoporosis.

Electronic Supplementary Material

Download File(s)
12274_2022_4554_MOESM1_ESM.pdf (848.3 KB)

References

1

Noel, S. E.; Santos, M. P.; Wright, N. C. Racial and ethnic disparities in bone health and outcomes in the United States. J. Bone Miner. Res. 2021, 36, 1881–1905.

2

Zeng, Q.; Li, N.; Wang, Q. Q.; Feng, J.; Sun, D. M.; Zhang, Q.; Huang, J. Y.; Wen, Q. X.; Hu, R.; Wang, L. et al. The prevalence of osteoporosis in China, a nationwide, multicenter DXA survey. J. Bone Miner. Res. 2019, 34, 1789–1797.

3

Lorentzon, M.; Johansson, H.; Harvey, N. C.; Liu, E.; Vandenput, L.; McCloskey, E.; Kanis, J. A. Osteoporosis and fractures in women: The burden of disease. Climacteric 2022, 25, 4–10.

4

Brown, C. Staying strong. Nature 2017, 550, S15–S17.

5

Compston, J. E.; McClung, M. R.; Leslie, W. D. Osteoporosis. Lancet 2019, 393, 364–376.

6

Everts-Graber, J.; Lehmann, D.; Burkard, J. P.; Schaller, B.; Gahl, B.; Häuselmann, H.; Studer, U.; Ziswiler, H. R.; Reichenbach, S.; Lehmann, T. Risk of osteonecrosis of the jaw under denosumab compared to bisphosphonates in patients with osteoporosis. J. Bone Miner. Res. 2022, 37, 340–348.

7

Gartlehner, G.; Patel, S. V.; Feltner, C.; Weber, R. P.; Long, R.; Mullican, K.; Boland, E.; Lux, L.; Viswanathan, M. Hormone therapy for the primary prevention of chronic conditions in postmenopausal women: Evidence report and systematic review for the US preventive services task force. JAMA 2017, 318, 2234–2249.

8

Jiang, Y. H.; Zhang, P.; Zhang, X.; Lv, L. W.; Zhou, Y. S. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Proliferat. 2021, 54, e12956.

9

Mirsaidi, A.; Genelin, K.; Vetsch, J. R.; Stanger, S.; Theiss, F.; Lindtner, R. A.; von Rechenberg, B.; Blauth, M.; Müller, R.; Kuhn, G. A. et al. Therapeutic potential of adipose-derived stromal cells in age-related osteoporosis. Biomaterials 2014, 35, 7326–7335.

10

Herberts, C. A.; Kwa, M. S. G.; Hermsen, H. P. H. Risk factors in the development of stem cell therapy. J. Transl. Med. 2011, 9, 29.

11

Kalluri, R.; LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977.

12

Andaloussi, S. E.; Mäger, I.; Breakefield, X. O.; Wood, M. J. A. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013, 12, 347–357.

13

Zhai, M. M.; Zhu, Y.; Yang, M. Y.; Mao, C. B. Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering Their miRNAs profiles. Adv. Sci. 2020, 7, 2001334.

14

Shi, M. M.; Yang, Q. Y.; Monsel, A.; Yan, J. Y.; Dai, C. X.; Zhao, J. Y.; Shi, G. C.; Zhou, M.; Zhu, X. M.; Li, S. K. et al. Preclinical efficacy and clinical safety of clinical-grade nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles. J. Extracell. Ves. 2021, 10, e12134.

15

Qin, Y. H.; Wang, L.; Gao, Z. L.; Chen, G. Y.; Zhang, C. Q. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci. Rep. 2016, 6, 21961.

16

Qiu, M.; Zhai, S. H.; Fu, Q.; Liu, D. Bone marrow mesenchymal stem cells-derived exosomal microRNA-150-3p promotes osteoblast proliferation and differentiation in osteoporosis. Hum. Gene Ther. 2021, 32, 717–729.

17

Mohamed-Ahmed, S.; Fristad, I.; Lie, S. A.; Suliman, S.; Mustafa, K.; Vindenes, H.; Idris, S. B. Adipose-derived and bone marrow mesenchymal stem cells: A donor-matched comparison. Stem Cell Res. Ther. 2018, 9, 168.

18

McIntosh, K.; Zvonic, S.; Garrett, S.; Mitchell, J. B.; Floyd, Z. E.; Hammill, L.; Kloster, A.; Di Halvorsen, Y.; Ting, J. P.; Storms, R. W. et al. The immunogenicity of human adipose-derived cells: Temporal changes in vitro. Stem Cells 2006, 24, 1246–1253.

19

Chen, S.; Tang, Y. M.; Liu, Y. S.; Zhang, P.; Lv, L. W.; Zhang, X.; Jia, L. F.; Zhou, Y. S. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. 2019, 52, e12669.

20

Liu, W.; Li, L. W.; Rong, Y. L.; Qian, D. F.; Chen, J.; Zhou, Z.; Luo, Y. J.; Jiang, D. D.; Cheng, L.; Zhao, S. J. et al. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater. 2020, 103, 196–212.

21

Narayanan, K.; Kumar, S.; Padmanabhan, P.; Gulyas, B.; Wan, A. C. A.; Rajendran, V. M. Lineage-specific exosomes could override extracellular matrix mediated human mesenchymal stem cell differentiation. Biomaterials 2018, 182, 312–322.

22

Lv, L. W.; Ge, W. S.; Liu, Y. S.; Lai, G. Y.; Liu, H.; Li, W. Y.; Zhou, Y. S. Lysine-specific demethylase 1 inhibitor rescues the osteogenic ability of mesenchymal stem cells under osteoporotic conditions by modulating H3K4 methylation. Bone Res. 2016, 4, 16037.

23

Makino, D. L.; Baumgärtner, M.; Conti, E. Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 2013, 495, 70–75.

24

Makino, D. L.; Halbach, F.; Conti, E. The RNA exosome and proteasome: Common principles of degradation control. Nat. Rev. Mol. Cell Biol. 2013, 14, 654–660.

25

Ibrahim, A.; Marban, E. Exosomes: Fundamental biology and roles in cardiovascular physiology. Annu. Rev. Physiol. 2016, 78, 67–83.

26

Zhang, B.; Wang, M.; Gong, A. H.; Zhang, X.; Wu, X. D.; Zhu, Y. H.; Shi, H.; Wu, L. J.; Zhu, W.; Qian, H. et al. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells 2015, 33, 2158–2168.

27

Zhou, Y.; Xu, H. T.; Xu, W. R.; Wang, B. Y.; Wu, H. Y.; Tao, Y.; Zhang, B.; Wang, M.; Mao, F.; Yan, Y. M. et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 2013, 4, 34.

28

Huang, T. B.; Yu, Z.; Yu, Q.; Wang, Y.; Jiang, Z. W.; Wang, H. M.; Yang, G. L. Inhibition of osteogenic and adipogenic potential in bone marrow-derived mesenchymal stem cells under osteoporosis. Biochem. Biophys. Res. Commun. 2020, 525, 902–908.

29

Chen, X. H.; Shi, Z. G.; Lin, H. B.; Wu, F.; Zheng, F.; Wu, C. F.; Huang, M. W. Resveratrol alleviates osteoporosis through improving the osteogenic differentiation of bone marrow mesenchymal stem cells. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 6352–6359.

30

Li, W. Y.; Liu, Y. S.; Zhang, P.; Tang, Y. M.; Zhou, M.; Jiang, W. R; Zhang, X.; Wu, G.; Zhou, Y. S. Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration. ACS Appl. Mater. Interfaces 2018, 10, 5240–5254.

31

Liu, A. Q.; Lin, D.; Zhao, H. J.; Chen, L.; Cai, B. L.; Lin, K. L.; Shen, S. G. Optimized BMSC-derived osteoinductive exosomes immobilized in hierarchical scaffold via lyophilization for bone repair through Bmpr2/Acvr2b competitive receptor-activated Smad pathway. Biomaterials 2021, 272, 120718.

32

Liao, W.; Du, Y.; Zhang, C. H.; Pan, F. W.; Yao, Y.; Zhang, T.; Peng, Q. Exosomes: The next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater. 2019, 86, 1–14.

33

Makarova, J.; Turchinovich, A.; Shkurnikov, M.; Tonevitsky, A. Extracellular miRNAs and cell–cell communication: Problems and prospects. Trends Biochem. Sci. 2021, 46, 640–651.

34

Li, H.; Li, T.; Fan, J.; Li, T.; Fan, L.; Wang, S.; Weng, X.; Han, Q.; Zhao, R. C. miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death Differ. 2015, 22, 1935–1945.

35

Zhao, S. J.; Kong, F. Q.; Jie, J.; Li, Q.; Liu, H.; Xu, A. D.; Yang, Y. Q.; Jiang, B.; Wang, D. D.; Zhou, Z. Q. et al. Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3β/β-catenin pathway. Theranostics 2020, 10, 17–35.

36

Fu, J. Y.; Chen, X. X.; Liu, X.; Xu, D. S.; Yang, H.; Zeng, C. T.; Long, H. B.; Zhou, C. Q.; Wu, H. D.; Zheng, G. H. et al. ELABELA ameliorates hypoxic/ischemic-induced bone mesenchymal stem cell apoptosis via alleviation of mitochondrial dysfunction and activation of PI3K/AKT and ERK1/2 pathways. Stem Cell Res. Ther. 2020, 11, 541.

37

Zhang, J. C.; Liu, Q. M.; Fang, Z. F.; Hu, X. Q.; Huang, F.; Tang, L.; Zhou, S. H. Hypoxia induces the proliferation of endothelial progenitor cells via upregulation of Apelin/APLNR/MAPK signaling. Mol. Med. Rep. 2016, 13, 1801–1806.

38

He, Y. D.; Li, Z.; Ding, X.; Xu, B. Y.; Wang, J. J.; Li, Y.; Chen, F. H.; Meng, F. H.; Song, W.; Zhang, Y. M. Nanoporous titanium implant surface promotes osteogenesis by suppressing osteoclastogenesis via integrin β1/FAKpY397/MAPK pathway. Bioact. Mater. 2022, 8, 109–123.

39

Hang, K.; Ye, C. Y.; Xu, J. X.; Chen, E. M.; Wang, C.; Zhang, W.; Ni, L.; Kuang, Z.; Ying, L.; Xue, D. T. et al. Apelin enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly through Wnt/β-catenin signaling pathway. Stem Cell Res. Ther. 2019, 10, 189.

40
In vitro and in vivo RNA  inhibition  by  CD9-HuR  functionalized  exosomes encapsulated with miRNA or CRISPR/dCas9Nano Lett.201919192810.1021/acs.nanolett.8b02689

Li, Z. L.; Zhou, X. Y.; Wei, M. Y.; Gao, X. T.; Zhao, L. B.; Shi, R. J.; Sun, W. Q.; Duan, Y. Y.; Yang, G. D.; Yuan, L. J. In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9. Nano Lett. 2019, 19, 19–28.

41

Liang, Y. J.; Xu, X.; Li, X. F.; Xiong, J. Y.; Li, B. Q.; Duan, L.; Wang, D. P.; Xia, J. Chondrocyte-targeted microRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy. ACS Appl. Mater. Interfaces 2020, 12, 36938–36947.

42

del Pozo-Acebo, L.; de las Hazas, M. C. L.; Tomé-Carneiro, J.; Gil-Cabrerizo, P.; San-Cristobal, R.; Busto, R.; Garcia-Ruiz, A.; Dávalos, A. Bovine milk-derived exosomes as a drug delivery vehicle for miRNA-based therapy. Int. J. Mol. Sci. 2021, 22, 1105.

43

Castaño, C.; Kalko, S.; Novials, A.; Parrizas, M. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc. Natl. Acad. Sci. USA 2018, 115, 12158–12163.

44

Joshi, B. S.; de Beer, M. A.; Giepmans, B. N. G.; Zuhorn, I. S. Endocytosis of extracellular vesicles and release of their cargo from endosomes. ACS Nano 2020, 14, 4444–4455.

45

Tian, T.; Zhu, Y. L.; Hu, F. H.; Wang, Y. Y.; Huang, N. P.; Xiao, Z. D. Dynamics of exosome internalization and trafficking. J. Cell. Physiol. 2013, 228, 1487–1495.

Nano Research
Pages 9135-9148
Cite this article:
Sheng C, Guo X, Wan Z, et al. Exosomes derived from human adipose-derived stem cells ameliorate osteoporosis through miR-335-3p/Aplnr axis. Nano Research, 2022, 15(10): 9135-9148. https://doi.org/10.1007/s12274-022-4554-5
Topics:

1158

Views

4

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 13 April 2022
Revised: 14 May 2022
Accepted: 16 May 2022
Published: 15 July 2022
© Tsinghua University Press 2022
Return