Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Treatment of osteoporosis is still a challenge in clinic, which leads to an increasing social burden as the aging of population. Exosomes originated from human adipose-derived stem cells (hASCs) hold promise to promote osteogenic differentiation, thus may ameliorate osteoporosis. The main purpose of this study was to investigate the novel usage of hASC-derived exosomes in the treatment of osteoporosis and their underlying mechanism. Two types of exosomes, i.e., exosomes derived from hASCs cultured in proliferation medium (P-Exos) and osteogenic induction medium (O-Exos), were obtained. As compared with P-Exos, O-Exos could promote the osteogenic differentiation of mouse bone marrow-derived stem cells (mBMSCs) from osteoporotic mice in vitro and ameliorated osteoporosis in vivo. Then, microRNA (miRNA)-335-3p was identified to be the key differentially expressed microRNA between the two exosomes by small RNA sequencing, gene overexpression and knock-down, qRT-PCR, and dual-luciferase reporter assay, and Aplnr was confirmed to be the potential target gene of miRNA-335-3p. In addition, miR-335-3p inhibitor-optimized O-Exos were established by transfection of miR-335-3p inhibitor, which significantly enhanced the osteogenic differentiation of mBMSCs in vitro, and bone density and number of trabecular bones in vivo compared with unoptimized O-Exos. Our results indicated that the ASC-exosome-based therapy brings new possibilities for osteoporosis treatment. Besides, engineered exosomes based on transfection of miRNA are a promising strategy to optimize the therapeutic effect of exosomes on osteoporosis.
Noel, S. E.; Santos, M. P.; Wright, N. C. Racial and ethnic disparities in bone health and outcomes in the United States. J. Bone Miner. Res. 2021, 36, 1881–1905.
Zeng, Q.; Li, N.; Wang, Q. Q.; Feng, J.; Sun, D. M.; Zhang, Q.; Huang, J. Y.; Wen, Q. X.; Hu, R.; Wang, L. et al. The prevalence of osteoporosis in China, a nationwide, multicenter DXA survey. J. Bone Miner. Res. 2019, 34, 1789–1797.
Lorentzon, M.; Johansson, H.; Harvey, N. C.; Liu, E.; Vandenput, L.; McCloskey, E.; Kanis, J. A. Osteoporosis and fractures in women: The burden of disease. Climacteric 2022, 25, 4–10.
Brown, C. Staying strong. Nature 2017, 550, S15–S17.
Compston, J. E.; McClung, M. R.; Leslie, W. D. Osteoporosis. Lancet 2019, 393, 364–376.
Everts-Graber, J.; Lehmann, D.; Burkard, J. P.; Schaller, B.; Gahl, B.; Häuselmann, H.; Studer, U.; Ziswiler, H. R.; Reichenbach, S.; Lehmann, T. Risk of osteonecrosis of the jaw under denosumab compared to bisphosphonates in patients with osteoporosis. J. Bone Miner. Res. 2022, 37, 340–348.
Gartlehner, G.; Patel, S. V.; Feltner, C.; Weber, R. P.; Long, R.; Mullican, K.; Boland, E.; Lux, L.; Viswanathan, M. Hormone therapy for the primary prevention of chronic conditions in postmenopausal women: Evidence report and systematic review for the US preventive services task force. JAMA 2017, 318, 2234–2249.
Jiang, Y. H.; Zhang, P.; Zhang, X.; Lv, L. W.; Zhou, Y. S. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Proliferat. 2021, 54, e12956.
Mirsaidi, A.; Genelin, K.; Vetsch, J. R.; Stanger, S.; Theiss, F.; Lindtner, R. A.; von Rechenberg, B.; Blauth, M.; Müller, R.; Kuhn, G. A. et al. Therapeutic potential of adipose-derived stromal cells in age-related osteoporosis. Biomaterials 2014, 35, 7326–7335.
Herberts, C. A.; Kwa, M. S. G.; Hermsen, H. P. H. Risk factors in the development of stem cell therapy. J. Transl. Med. 2011, 9, 29.
Kalluri, R.; LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977.
Andaloussi, S. E.; Mäger, I.; Breakefield, X. O.; Wood, M. J. A. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013, 12, 347–357.
Zhai, M. M.; Zhu, Y.; Yang, M. Y.; Mao, C. B. Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering Their miRNAs profiles. Adv. Sci. 2020, 7, 2001334.
Shi, M. M.; Yang, Q. Y.; Monsel, A.; Yan, J. Y.; Dai, C. X.; Zhao, J. Y.; Shi, G. C.; Zhou, M.; Zhu, X. M.; Li, S. K. et al. Preclinical efficacy and clinical safety of clinical-grade nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles. J. Extracell. Ves. 2021, 10, e12134.
Qin, Y. H.; Wang, L.; Gao, Z. L.; Chen, G. Y.; Zhang, C. Q. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci. Rep. 2016, 6, 21961.
Qiu, M.; Zhai, S. H.; Fu, Q.; Liu, D. Bone marrow mesenchymal stem cells-derived exosomal microRNA-150-3p promotes osteoblast proliferation and differentiation in osteoporosis. Hum. Gene Ther. 2021, 32, 717–729.
Mohamed-Ahmed, S.; Fristad, I.; Lie, S. A.; Suliman, S.; Mustafa, K.; Vindenes, H.; Idris, S. B. Adipose-derived and bone marrow mesenchymal stem cells: A donor-matched comparison. Stem Cell Res. Ther. 2018, 9, 168.
McIntosh, K.; Zvonic, S.; Garrett, S.; Mitchell, J. B.; Floyd, Z. E.; Hammill, L.; Kloster, A.; Di Halvorsen, Y.; Ting, J. P.; Storms, R. W. et al. The immunogenicity of human adipose-derived cells: Temporal changes in vitro. Stem Cells 2006, 24, 1246–1253.
Chen, S.; Tang, Y. M.; Liu, Y. S.; Zhang, P.; Lv, L. W.; Zhang, X.; Jia, L. F.; Zhou, Y. S. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. 2019, 52, e12669.
Liu, W.; Li, L. W.; Rong, Y. L.; Qian, D. F.; Chen, J.; Zhou, Z.; Luo, Y. J.; Jiang, D. D.; Cheng, L.; Zhao, S. J. et al. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater. 2020, 103, 196–212.
Narayanan, K.; Kumar, S.; Padmanabhan, P.; Gulyas, B.; Wan, A. C. A.; Rajendran, V. M. Lineage-specific exosomes could override extracellular matrix mediated human mesenchymal stem cell differentiation. Biomaterials 2018, 182, 312–322.
Lv, L. W.; Ge, W. S.; Liu, Y. S.; Lai, G. Y.; Liu, H.; Li, W. Y.; Zhou, Y. S. Lysine-specific demethylase 1 inhibitor rescues the osteogenic ability of mesenchymal stem cells under osteoporotic conditions by modulating H3K4 methylation. Bone Res. 2016, 4, 16037.
Makino, D. L.; Baumgärtner, M.; Conti, E. Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 2013, 495, 70–75.
Makino, D. L.; Halbach, F.; Conti, E. The RNA exosome and proteasome: Common principles of degradation control. Nat. Rev. Mol. Cell Biol. 2013, 14, 654–660.
Ibrahim, A.; Marban, E. Exosomes: Fundamental biology and roles in cardiovascular physiology. Annu. Rev. Physiol. 2016, 78, 67–83.
Zhang, B.; Wang, M.; Gong, A. H.; Zhang, X.; Wu, X. D.; Zhu, Y. H.; Shi, H.; Wu, L. J.; Zhu, W.; Qian, H. et al. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells 2015, 33, 2158–2168.
Zhou, Y.; Xu, H. T.; Xu, W. R.; Wang, B. Y.; Wu, H. Y.; Tao, Y.; Zhang, B.; Wang, M.; Mao, F.; Yan, Y. M. et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 2013, 4, 34.
Huang, T. B.; Yu, Z.; Yu, Q.; Wang, Y.; Jiang, Z. W.; Wang, H. M.; Yang, G. L. Inhibition of osteogenic and adipogenic potential in bone marrow-derived mesenchymal stem cells under osteoporosis. Biochem. Biophys. Res. Commun. 2020, 525, 902–908.
Chen, X. H.; Shi, Z. G.; Lin, H. B.; Wu, F.; Zheng, F.; Wu, C. F.; Huang, M. W. Resveratrol alleviates osteoporosis through improving the osteogenic differentiation of bone marrow mesenchymal stem cells. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 6352–6359.
Li, W. Y.; Liu, Y. S.; Zhang, P.; Tang, Y. M.; Zhou, M.; Jiang, W. R; Zhang, X.; Wu, G.; Zhou, Y. S. Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration. ACS Appl. Mater. Interfaces 2018, 10, 5240–5254.
Liu, A. Q.; Lin, D.; Zhao, H. J.; Chen, L.; Cai, B. L.; Lin, K. L.; Shen, S. G. Optimized BMSC-derived osteoinductive exosomes immobilized in hierarchical scaffold via lyophilization for bone repair through Bmpr2/Acvr2b competitive receptor-activated Smad pathway. Biomaterials 2021, 272, 120718.
Liao, W.; Du, Y.; Zhang, C. H.; Pan, F. W.; Yao, Y.; Zhang, T.; Peng, Q. Exosomes: The next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater. 2019, 86, 1–14.
Makarova, J.; Turchinovich, A.; Shkurnikov, M.; Tonevitsky, A. Extracellular miRNAs and cell–cell communication: Problems and prospects. Trends Biochem. Sci. 2021, 46, 640–651.
Li, H.; Li, T.; Fan, J.; Li, T.; Fan, L.; Wang, S.; Weng, X.; Han, Q.; Zhao, R. C. miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death Differ. 2015, 22, 1935–1945.
Zhao, S. J.; Kong, F. Q.; Jie, J.; Li, Q.; Liu, H.; Xu, A. D.; Yang, Y. Q.; Jiang, B.; Wang, D. D.; Zhou, Z. Q. et al. Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3β/β-catenin pathway. Theranostics 2020, 10, 17–35.
Fu, J. Y.; Chen, X. X.; Liu, X.; Xu, D. S.; Yang, H.; Zeng, C. T.; Long, H. B.; Zhou, C. Q.; Wu, H. D.; Zheng, G. H. et al. ELABELA ameliorates hypoxic/ischemic-induced bone mesenchymal stem cell apoptosis via alleviation of mitochondrial dysfunction and activation of PI3K/AKT and ERK1/2 pathways. Stem Cell Res. Ther. 2020, 11, 541.
Zhang, J. C.; Liu, Q. M.; Fang, Z. F.; Hu, X. Q.; Huang, F.; Tang, L.; Zhou, S. H. Hypoxia induces the proliferation of endothelial progenitor cells via upregulation of Apelin/APLNR/MAPK signaling. Mol. Med. Rep. 2016, 13, 1801–1806.
He, Y. D.; Li, Z.; Ding, X.; Xu, B. Y.; Wang, J. J.; Li, Y.; Chen, F. H.; Meng, F. H.; Song, W.; Zhang, Y. M. Nanoporous titanium implant surface promotes osteogenesis by suppressing osteoclastogenesis via integrin β1/FAKpY397/MAPK pathway. Bioact. Mater. 2022, 8, 109–123.
Hang, K.; Ye, C. Y.; Xu, J. X.; Chen, E. M.; Wang, C.; Zhang, W.; Ni, L.; Kuang, Z.; Ying, L.; Xue, D. T. et al. Apelin enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly through Wnt/β-catenin signaling pathway. Stem Cell Res. Ther. 2019, 10, 189.
Li, Z. L.; Zhou, X. Y.; Wei, M. Y.; Gao, X. T.; Zhao, L. B.; Shi, R. J.; Sun, W. Q.; Duan, Y. Y.; Yang, G. D.; Yuan, L. J.
Liang, Y. J.; Xu, X.; Li, X. F.; Xiong, J. Y.; Li, B. Q.; Duan, L.; Wang, D. P.; Xia, J. Chondrocyte-targeted microRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy. ACS Appl. Mater. Interfaces 2020, 12, 36938–36947.
del Pozo-Acebo, L.; de las Hazas, M. C. L.; Tomé-Carneiro, J.; Gil-Cabrerizo, P.; San-Cristobal, R.; Busto, R.; Garcia-Ruiz, A.; Dávalos, A. Bovine milk-derived exosomes as a drug delivery vehicle for miRNA-based therapy. Int. J. Mol. Sci. 2021, 22, 1105.
Castaño, C.; Kalko, S.; Novials, A.; Parrizas, M. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc. Natl. Acad. Sci. USA 2018, 115, 12158–12163.
Joshi, B. S.; de Beer, M. A.; Giepmans, B. N. G.; Zuhorn, I. S. Endocytosis of extracellular vesicles and release of their cargo from endosomes. ACS Nano 2020, 14, 4444–4455.
Tian, T.; Zhu, Y. L.; Hu, F. H.; Wang, Y. Y.; Huang, N. P.; Xiao, Z. D. Dynamics of exosome internalization and trafficking. J. Cell. Physiol. 2013, 228, 1487–1495.