Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Calcination-controlled fabrication of carbon dots@zeolite composites with multicolor fluorescence and phosphorescence

Siyu Zong§Bolun Wang§Xin YinWenyan MaJiani ZhangJiyang Li()
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China

§ Siyu Zong and Bolun Wang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
A universal calcination strategy based on the in-situ hydrothermal synthesis is presented to prepare multicolor CDs-based composites.

Abstract

In light of the exceptional optical qualities, luminous carbon dots (CDs), particularly those with room-temperature phosphorescence (RTP), have a wide range of applications in a variety of fields. However, modulating afterglow emissions practically and efficiently remains a serious difficulty. Herein, a feasible strategy of calcination combined with in-situ synthesis is proposed to fabricate CDs-based composites with multicolor fluorescence (FL) and phosphorescence. Through pre-selection of small pore RHO zeolite as a matrix, CDs have been successfully embedded due to strong guest–host interaction achieved by in-situ hydrothermal synthesis. By the unique pore architecture and excellent stability of the zeolite matrix, the surface oxidation degree and the carbon core size of confined CDs are engineered by temperature-controlled calcination. The resulting composites exhibit tunable FL (from 416 to 566 nm) and RTP (from 440 to 585 nm) in solid and aqueous solution, in which rarely occurring deep blue RTP is observed with a lifetime as long as 573 ms. Furthermore, the universality of such a calcination-modulated luminescent method has been proved by the AFI zeolite matrix. This study offers up a new way to regulate the luminescence of CDs facilitated by matrix, which considerably promotes the potential applications of CDs-based composites in the future.

Electronic Supplementary Material

Download File(s)
12274_2022_4558_MOESM1_ESM.pdf (1.7 MB)

References

1

Yu, Y. C.; Kwon, M. S.; Jung, J.; Zeng, Y. Y.; Kim, M.; Chung, K.; Gierschner, J.; Youk, J. H.; Borisov, S. M.; Kim, J. Room-temperature-phosphorescence-based dissolved oxygen detection by core–shell polymer nanoparticles containing metal-free organic phosphors. Angew. Chem., Int. Ed. 2017, 56, 16207–16211.

2

Shen, J. L.; Xiao, Q. W.; Sun, P. P.; Feng, J.; Xin, X.; Yu, Y.; Qi, W. Self-assembled chiral phosphorescent microflowers from Au nanoclusters with dual-mode pH sensing and information encryption. ACS Nano. 2021, 15, 4947–4955.

3

Maldiney, T.; Lecointre, A.; Viana, B.; Bessière, A.; Bessodes, M.; Gourier, D.; Richard. C.; Scherman, D. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc. 2011, 133, 11810–11815.

4

Yang, J.; Zhen, X.; Wang, B.; Gao, X. M.; Ren, Z. C.; Wang, J. Q.; Xie, Y. J.; Li, J. R.; Peng, Q.; Pu, K. Y. et al. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat. Commun. 2018, 9, 840.

5

Tao, S. Y.; Lu, S. Y.; Geng, Y. J.; Zhu, S. J.; Redfern, S. A. T.; Song, Y. B.; Feng, T. L.; Xu, W. Q.; Yang, B. Design of metal-free polymer carbon dots: A new class of room-temperature phosphorescent materials. Angew. Chem., Int. Ed. 2018, 57, 2393–2398.

6

Li, W.; Zhou, W.; Zhou, Z. S.; Zhang, H. R.; Zhang, X. J.; Zhuang, J. L.; Liu, Y. L.; Lei, B. F.; Hu, C. F. A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix. Angew. Chem., Int. Ed. 2019, 58, 7278–7283.

7

Wang, B. L.; Yu, Y.; Zhang, H. Y.; Xuan, Y. Z.; Chen, G. R.; Ma, W. Y.; Li, J. Y.; Yu, J. H. Carbon dots in a matrix: Energy-transfer-enhanced room-temperature red phosphorescence. Angew. Chem., Int. Ed. 2019, 58, 18443–18448.

8

An, Z. F.; Zheng, C.; Tao, Y.; Chen, R. F.; Shi, H. F.; Chen, T.; Wang, Z. X.; Li, H. H.; Deng, R. R.; Liu, X. G. et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 2015, 14, 685–690.

9

Sun, J.; Ahn, H.; Kang, S.; Ko, S. B.; Song, D.; Um, H. A.; Kim, S.; Lee, Y.; Jeon, P.; Hwang, S. H. et al. Exceptionally stable blue phosphorescent organic light-emitting diodes. Nat. Photonics. 2022, 16, 212–218.

10

Xu, H. Y.; Yu, W. J.; Pang, K.; Wang, G. F.; Zhu, P. F. Confinement and antenna effect for ultrasmall Y2O3: Eu3+ nanocrystals supported by MOF with enhanced near-UV light absorption thereby enhanced luminescence and excellently multifunctional applications. Nano Res. 2021, 14, 720–729.

11

Wang, X. F.; Guo, W. J.; Xiao, H. Y.; Yang, Q. Z.; Chen, B.; Chen, Y. Z.; Tung, C. H.; Wu, L. Z. Pure organic room temperature phosphorescence from unique micelle-assisted assembly of nanocrystals in water. Adv. Funct. Mater. 2020, 30, 1907282.

12

Zhang, X. P.; Du, L. L.; Zhao, W. J.; Zhao, Z.; Xiong, Y.; He, X. W.; Gao, P. F.; Alam, P.; Wang, C.; Li, Z. et al. Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons. Nat. Commun. 2019, 10, 5161.

13

Shoji, Y.; Ikabata, Y.; Wang, Q.; Nemoto, D.; Sakamoto, A.; Tanaka, N.; Seino, J.; Nakai, H.; Fukushima, T. Unveiling a new aspect of simple arylboronic esters: Long-lived room-temperature phosphorescence from heavy-atom-free molecules. J. Am. Chem. Soc. 2017, 139, 2728–2733.

14

Wei, J. B.; Liang, B. Y.; Duan, R. H.; Cheng, Z.; Li, C. L.; Zhou, T. L.; Yi, Y. P.; Wang, Y. Induction of strong long-lived room-temperature phosphorescence of N-phenyl-2-naphthylamine molecules by confinement in a crystalline dibromobiphenyl matrix. Angew. Chem., Int. Ed. 2016, 55, 15589–15593.

15

Jiang, K.; Wang, Y. H.; Li, Z. J.; Lin, H. W. Afterglow of carbon dots: Mechanism, strategy and applications. Mater. Chem. Front. 2020, 4, 386–399.

16

Wei, X. Y.; Yang, J. W.; Hu, L. L.; Cao, Y.; Lai, J.; Cao, F. F.; Gu, J. J.; Cao, X. F. Recent advances in room temperature phosphorescent carbon dots: Preparation, mechanism, and applications. J. Mater. Chem. C 2021, 9, 4425–4443.

17

Song, S. Y.; Sui, L. Z.; Liu, K. K.; Cao, Q.; Zhao, W. B.; Liang, Y. C.; Lv, C. F.; Zang, J. H.; Shang, Y.; Lou, Q. et al. Self-exothermic reaction driven large-scale synthesis of phosphorescent carbon nanodots. Nano Res. 2021, 14, 2231–2240.

18

Liang, Y. C.; Shang, Y.; Liu, K. K.; Liu, Z.; Wu, W. J.; Liu, Q.; Zhao, Q.; Wu, X. Y.; Dong, L.; Shang, C. X. Water-induced ultralong room temperature phosphorescence by constructing hydrogen-bonded networks. Nano Res. 2020, 13, 875–881.

19

Wang, Z. F.; Liu, Y.; Zhen, S. J.; Li, X. X.; Zhang, W. G.; Sun, X.; Xu, B. Y.; Wang, X.; Gao, Z. H.; Meng, X. G. Gram-scale synthesis of 41% efficient single-component white-light-emissive carbonized polymer dots with hybrid fluorescence/phosphorescence for white light-emitting diodes. Adv. Sci. 2020, 7, 1902688.

20

Zhu, J. Y.; Bai, X.; Chen, X.; Shao, H.; Zhai, Y.; Pan, G. C.; Zhang, H. Z.; Ushakova, E. V.; Zhang, Y.; Song, H. W. et al. Spectrally tunable solid state fluorescence and room-temperature phosphorescence of carbon dots synthesized via seeded growth method. Adv. Optical Mater. 2019, 7, 1801599.

21

Jiang, K.; Wang, Y. H.; Gao, X. L.; Cai, C. Z.; Lin, H. W. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew. Chem., Int. Ed. 2018, 57, 6216–6220.

22

Lin, C. J.; Zhuang, Y. X.; Li, W. H.; Zhou, T. L.; Xie, R. J. Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots. Nanoscale 2019, 11, 6584–6590.

23

Li, W.; Wu, S. S.; Xu, X. K.; Zhuang, J. L.; Zhang, H. R.; Zhang, X. J.; Hu, C. F.; Lei, B. F.; Kaminski, C. F.; Liu, Y. L. Carbon dot-silica nanoparticle composites for ultralong lifetime phosphorescence imaging in tissue and cells at room temperature. Chem. Mater. 2019, 31, 9887–9894.

24

Liu, J. C.; Zhang, H. Y.; Wang, N.; Yu, Y.; Cui, Y. Z.; Li, J. Y.; Yu, J. H. Template-modulated afterglow of carbon dots in zeolites: Room-temperature phosphorescence and thermally activated delayed fluorescence. ACS Mater. Lett. 2019, 1, 58–63.

25

Tan, J.; Zou, R.; Zhang, J.; Li, W.; Zhang, L. Q.; Yue, D. M. Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix. Nanoscale 2016, 8, 4742–4747.

26

Deng, Y. H.; Zhao, D. X.; Chen, X.; Wang, F.; Song, H.; Shen, D. Z. Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem. Commun. 2013, 49, 5751–5753.

27

Wang, C.; Chen, Y. Y.; Xu, Y. L.; Ran, G. X.; He, Y. M.; Song, Q. J. Aggregation-induced room-temperature phosphorescence obtained from water-dispersible carbon dot-based composite materials. ACS Appl. Mater. Interfaces 2020, 12, 10791–10800.

28

Zhang, H. Y.; Wang, B. L.; Yu, X. W.; Li, J. Y.; Shang, J.; Yu, J. H. Carbon dots in porous materials: Host–guest synergy for enhanced performance. Angew. Chem., Int. Ed. 2020, 59, 19390–19402.

29

Liu, J. C.; Wang, N.; Yu, Y.; Yan, Y.; Zhang, H. Y.; Li, J. Y.; Yu, J. H. Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Sci. Adv. 2017, 3, e1603171.

30

Yu, X. W.; Liu, K. K.; Zhang, H. Y.; Wang, B. L.; Yang, G. J.; Li, J. Y.; Yu, J. H. Lifetime-engineered phosphorescent carbon dots-in-zeolite composites for naked-eye visible multiplexing. CCS Chem. 2021, 3, 252–264.

31

Wang, B. L.; Mu, Y.; Zhang, H. Y.; Shi, H. Z.; Chen, G. R.; Yu, Y.; Yang, Z. Q.; Li, J. Y.; Yu, J. H. Red room-temperature phosphorescence of CDs@zeolite composites triggered by heteroatoms in zeolite frameworks. ACS Cent. Sci. 2019, 5, 349–356.

32

Zhang, H. Y.; Liu, K. K.; Liu, J. C.; Wang, B. L.; Li, C. Y.; Song, W.; Li, J. Y.; Huang, L.; Yu, J. H. Carbon dots-in-zeolite via in-situ solvent-free thermal crystallization: Achieving high-efficiency and ultralong afterglow dual emission. CCS Chem. 2020, 2, 118–127.

33

Wang, L.; Li, W. T.; Yin, L. Q.; Liu, Y. J.; Guo, H. Z.; Lai, J. W.; Han, Y.; Li, G.; Li, M.; Zhang, J. H. et al. Full-color fluorescent carbon quantum dots. Sci. Adv. 2020, 6, eabb6772.

34

Lee, S.; Kim, S. O.; Shin, H.; Yun, H. J.; Yang, K.; Kwon, S. K.; Kim, J. J.; Kim, Y. H. Deep-blue phosphorescence from perfluoro carbonyl-substituted iridium complexes. J. Am. Chem. Soc. 2013, 135, 14321–14328.

35

Ding, Y. F.; Wang, X. L.; Tang, M.; Qiu, H. B. Tailored fabrication of carbon dot composites with full-color ultralong room-temperature phosphorescence for multidimensional encryption. Adv. Sci. 2021, 9, 2103833.

36

Cui, S. Q.; Wang, B. W.; Zan, Y. X.; Shen, Z. Y.; Liu, S.; Fang, W. W.; Yan, X. L.; Li, Y.; Chen, L. G. Colorful, time-dependent carbon dot-based afterglow with ultralong lifetime. Chem. Eng. J. 2022, 431, 133373.

37

Tang, G. Q.; Wang, C. C.; Zhang, K.; Wang, Y.; Yang, B. Deep-blue room-temperature phosphorescent carbon dots/silica microparticles from a single raw material. Langmuir 2021, 37, 13187–13193.

38

Zhou, E. J.; Hou, J. H.; Yang, C. H.; Li, Y. F. Synthesis and properties of polythiophenes with conjugated side-chains containing carbon–carbon double and triple bonds. J. Polym. Sci. A Polym. Chem. 2006, 44, 2206–2214.

39

Ru, Y.; Ai, L.; Jia, T. T.; Liu, X. J.; Lu, S. Y.; Tang, Z. Y.; Yang, B. Recent advances in chiral carbonized polymer dots: From synthesis and properties to applications. Nano Today 2020, 34, 100953.

40

Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491.

41

Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.

42

Tian, Z.; Zhang, X. T.; Li, D.; Zhou, D.; Jing, P. T.; Shen, D. Z.; Qu, S. N.; Zboril, R.; Rogach, A. L. Full-color inorganic carbon dot phosphors for white-light-emitting diodes. Adv. Optical Mater. 2017, 5, 1700416.

43

Bao, L.; Liu, C.; Zhang, Z. L.; Pang, D. W. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater. 2015, 27, 1663–1667.

44

Chien, C. T.; Li, S. S.; Lai, W. J.; Yeh, Y. C.; Chen, H. A.; Chen, I. S.; Chen, L. C.; Chen, K. H.; Nemoto, T.; Isoda, S. et al. Tunable photoluminescence from graphene oxide. Angew. Chem., Int. Ed. 2012, 51, 6662–6666.

45

Wang, L.; Zhu, S. J.; Wang, H. Y.; Qu, S. N.; Zhang, Y. L.; Zhang, J. H.; Chen, Q. D.; Xu, H. L.; Han, W.; Yang, B. et al. Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano 2014, 8, 2541–2547.

46

Wang, B. L.; Mu, Y.; Yin, H.; Yang, Z. Q.; Shi, Y.; Li, J. Y. Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots. Nanoscale 2018, 10, 10650–10656.

47

Ehrat, F.; Bhattacharyya, S.; Schneider, J.; Löf, A.; Wyrwich, R.; Rogach, A. L.; Stolarczyk, J. K.; Urban, A. S.; Feldmann, J. Tracking the source of carbon dot photoluminescence: Aromatic domains versus molecular fluorophores. Nano Lett. 2017, 17, 7710–7716.

48

Song, Y. B.; Zhu, S. J.; Zhang, S. T.; Fu, Y.; Wang, L.; Zhao, X. H.; Yang, B. Investigation from chemical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine. J. Mater. Chem. C 2015, 3, 5976–5984.

Nano Research
Pages 9454-9460
Cite this article:
Zong S, Wang B, Yin X, et al. Calcination-controlled fabrication of carbon dots@zeolite composites with multicolor fluorescence and phosphorescence. Nano Research, 2022, 15(10): 9454-9460. https://doi.org/10.1007/s12274-022-4558-1
Topics:
Metrics & Citations  
Article History
Copyright
Return