AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-situ oxidized tungsten disulfide nanosheets achieve ultrafast photocatalytic extraction of uranium through hydroxyl-mediated binding and reduction

Huanhuan Liu1,§Jia Lei1,§Changyao Gong1Ye Li1Huimei Chen2Jiali Chen1Fengchun Wen1Dengjiang Fu1Yan Liu2( )Wenkun Zhu1( )Rong He1( )
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science and Technology, Mianyang 621010, China
College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China

§ Huanhuan Liu and Jia Lei contributed equally to this work.

Show Author Information

Graphical Abstract

The oxidized surface tended to trap hydrogen atom and in-situ form hydroxyl groups in defect sites. The in-situ formed hydroxyl groups participated in the uranium reduction, which dramatically enhanced uranium extraction kinetics and efficiency.

Abstract

Photoreduction of hexavalent uranium (U(VI)) by semiconductor provides a novel and effective avenue for uranium extraction. Unfortunately, the traditional metal oxide and sulfide semiconductors suffer from the lack of confinement sites to U(VI), which resulted in the long period (~ 1 h) to achieve a high U(VI) extraction efficiency of > 90%. Herein, we successfully constructed WS2 nanosheets and created in-situ oxidized domains on the surfaces (O-WS2) to promote the uranium extraction and the corresponding removal kinetics. In this system, the O7.7-WS2 nanosheets exhibited a considerable U(VI) extraction efficiency of > 90% within 20 min in 8 mg·L–1 U(VI)-containing solution, which represented the highly efficient U(VI) removal performance. In 200 mg·L–1 U(VI)-containing solution, the O7.7-WS2 nanosheets exhibited an extraction capacity of 652.4 mg·g–1. The mechanism study revealed that the oxidized surface tended to trap hydrogen atom and in-situ form hydroxyl groups in defect sites. Evidenced by a series of experiment, such as kinetic isotope effect, 1H nuclear magnetic resonance (NMR) spectra, and X-ray absorption near-edge structure (XANES) spectra, the in-situ formed hydroxyl groups participated in the uranium reduction, which dramatically enhanced uranium extraction kinetics and efficiency.

Electronic Supplementary Material

Download File(s)
12274_2022_4559_MOESM1_ESM.pdf (2.5 MB)

References

1

Yuan, Y.; Yang, Y. J.; Ma, X. J.; Meng, Q. H.; Wang, L. L.; Zhao, S.; Zhu, G. S. Molecularly imprinted porous aromatic frameworks and their composite components for selective extraction of uranium ions. Adv. Mater. 2018, 30, 1706507.

2

Yu, Q. H.; Yuan, Y. H.; Wen, J.; Zhao, X. M.; Zhao, S. L.; Wang, D.; Li, C. Y.; Wang, X. L.; Wang, N. A universally applicable strategy for construction of anti-biofouling adsorbents for enhanced uranium recovery from seawater. Adv. Sci. 2019, 6, 1900002.

3

Zhang, S.; Li, H.; Wang, S. A. Construction of an ion pathway boosts uranium extraction from seawater. Chem 2020, 6, 1504–1505.

4

Wang, X. X.; Chen, L.; Wang, L.; Fan, Q. H.; Pan, D. Q.; Li, J. X.; Chi, F. T.; Xie, Y.; Yu, S. J.; Xiao, C. L. et al. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci. China Chem. 2019, 62, 933–967.

5

Xie, Y.; Chen, C. L.; Ren, X. M.; Wang, X. X.; Wang, H. Y.; Wang, X. K. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog. Mater. Sci. 2019, 103, 180–234.

6

Li, H.; Wang, S. A. Reaction: Semiconducting MOFs offer new strategy for uranium extraction from seawater. Chem 2021, 7, 279–280.

7

Wang, N.; Pang, H. W.; Yu, S. J.; Gu, P. C.; Song, S.; Wang, H. Q.; Wang, X. K. Investigation of adsorption mechanism of layered double hydroxides and their composites on radioactive uranium: A review. Acta Chim. Sin. 2019, 77, 143–152.

8

Yu K. F.; Tang L.; Cao X.; Guo Z. H.; Zhang Y.; Li N.; Dong C. X.; Gong X.; Chen T.; He R. et al. Semiconducting metal-organic frameworks decorated with spatially separated dual cocatalysts for efficient Uranium(VI) photoreduction. Adv. Funct. Mater. 2022, 32, 2200315.

9

Wu, F. C.; Pu, N.; Ye, G.; Sun, T. X.; Wang, Z.; Song, Y.; Wang, W. Q.; Huo, X. M.; Lu, Y. X.; Chen, J. Performance and mechanism of uranium adsorption from seawater to poly(dopamine)-inspired sorbents. Environ. Sci. Technol. 2017, 51, 4606–4614.

10

Zhang, M. X.; Liang, C. Y.; Cheng, G. D.; Chen, J. C.; Wang, Y. M.; He, L. W.; Cheng, L. W.; Gong, S. C.; Zhang, D.; Li, J. et al. Intrinsic semiconducting behavior in a large mixed-valent uranium(V/VI) cluster. Angew. Chem. , Int. Ed. 2021, 60, 9886–9890.

11

Chen, M. W.; Liu, T.; Zhang, X. B.; Zhang, R. Q.; Tang, S.; Yuan, Y. H.; Xie, Z. J.; Liu, Y. J.; Wang, H.; Fedorovich, K. V. et al. Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel. Adv. Funct. Mater. 2021, 31, 2100106.

12

Liu, H. H.; Lei, J.; Chen, J. L.; Li, Y.; Gong, C. Y.; Yang, S. J.; Zheng, Y. M.; Lu, N.; Liu, Y.; Zhu, W. K.; He, R. Hydrogen-incorporated vanadium dioxide nanosheets enable efficient uranium confinement and photoreduction. Nano Res. 2022, 15, 2943–2951.

13

Zhang, H. L.; Liu, W.; Li, A.; Zhang, D.; Li, X. Y.; Zhai, F. W.; Chen, L. H.; Chen, L.; Wang, Y. L.; Wang, S. A. Three mechanisms in one material: Uranium capture by a polyoxometalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction. Angew. Chem. , Int. Ed. 2019, 58, 16110–16114.

14

Khaing, K. K.; Yin, D. G.; Ouyang, Y. G.; Xiao, S. T.; Liu, B. Q.; Deng, L. L.; Li, L. Q.; Guo, X. D.; Wang, J.; Liu, J. L. et al. Fabrication of 2D-2D heterojunction catalyst with covalent organic framework (COF) and MoS2 for highly efficient photocatalytic degradation of organic pollutants. Inorg. Chem. 2020, 59, 6942–6952.

15

Lei, J.; Liu, H. H.; Yuan, C. P.; Chen, Q.; Liu, J. A.; Wen, F. C.; Jiang, X. Y.; Deng, W. J.; Cui, X. D.; Duan, T. et al. Enhanced photoreduction of U(VI) on WO3 nanosheets by oxygen defect engineering. Chem. Eng. J. 2021, 416, 129164.

16

Feng, J. N.; Yang, Z. Q.; He, S.; Niu, X. J.; Zhang, T. P.; Ding, A.; Liang, H.; Feng, X. C. Photocatalytic reduction of uranium(VI) under visible light with Sn-doped In2S3 microspheres. Chemosphere 2018, 212, 114–123.

17

LI, H.; Zhai, F. W.; Gui, D. X.; Wang, X. X.; Wu, C. F.; Zhang, D.; Dai, X.; Deng, H.; Su, X. T.; Juan, D. W. et al. Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks. Appl. Catal. B-Environ. 2019, 254, 47–54.

18

Dong, C. X.; Qiao, T. T.; Huang, Y. B.; Yuan, X.; Lian, J.; Duan, T.; Zhu, W. K.; He, R. Efficient photocatalytic extraction of uranium over ethylenediamine capped cadmium sulfide telluride nanobelts. ACS Appl. Mater. Interfaces 2021, 13, 11968–11976.

19

Velasco, C. A.; Artyushkova, K.; Ali, A. M. S.; Osburn, C. L.; Gonzalez-Estrella, J.; Lezama-Pacheco, J. S.; Cabaniss, S. E.; Cerrato, J. M. Organic functional group chemistry in mineralized deposits containing U(IV) and U(VI) from the jackpile mine in new mexico. Environ. Sci. Technol. 2019, 53, 5758–5767.

20

Bonato, M.; Allen, G. C.; Scott, T. B. Reduction of U(VI) to U(IV) on the surface of TiO2 anatase nanotubes. Micro Nano Lett. 2008, 3, 57–61.

21

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

22

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

23

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

24

Xu, J.; Cheng, X. L.; Liu, T.; Yu, Y. Q.; Song, L. L.; You, Y.; Wang, T.; Zhang, J. J. Oxygen-incorporated and layer-by-layer stacked WS2 nanosheets for broadband, self-driven and fast-response photodetectiont. Nanoscale 2019, 11, 6810–6816.

25

Yang, Z. L.; Gao, D. Q.; Zhang, J.; Xu, Q.; Shi, S. P.; Tao, K.; Xue, D. S. Realization of high Curie temperature ferromagnetism in atomically thin MoS2 and WS2 nanosheets with uniform and flower-like morphology. Nanoscale 2015, 7, 650–658.

26

Yan, X. B.; Zhao, Q. L.; Chen, A. P.; Zhao, J. H.; Zhou, Z. Y.; Wang, J. J.; Wang, H.; Zhang, L.; Li, X. Y.; Xiao, Z. A. et al. Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing. Small 2019, 15, 1901423.

27

Hu, Z. L.; Avila, J.; Wang, X. Y.; Leong, J. F.; Zhang, Q.; Liu, Y. P.; Asensio, M. C.; Lu, J. P.; Carvalho, A.; Sow, C. H. et al. The role of oxygen atoms on excitons at the edges of monolayer WS2. Nano Lett. 2019, 19, 4641–4650.

28

Tian, W.; Chen, C.; Meng, L. X.; Xu, W. W.; Cao, F. R.; Li, L. PVP treatment induced gradient oxygen doping in In2S3 nanosheet to boost solar water oxidation of WO3 nanoarray photoanode. Adv. Energy Mater. 2020, 10, 1903951.

29

Zhang, N.; Li, X. Y.; Ye, H. C.; Chen, S. M.; Ju, H. X.; Liu, D. B.; Lin, Y.; Ye, W.; Wang, C. M.; Xu, Q. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 2016, 138, 8928–8935.

30

Wang, Z.; Liu, H. X.; Lei, Z.; Huang, L. Q.; Wu, T.; Liu, S.; Ye, G. Y.; Lu, Y. X.; Wang, X. K. Graphene aerogel for photocatalysis-assist uranium elimination under visible light and air atmosphere. Chem. Eng. J. 2020, 402, 126256.

31

Dai, Z. R.; Sun, Y. S.; Zhang, H.; Ding, D. X.; Li, L. Photocatalytic reduction of U(VI) in wastewater by mGO/g-C3N4 nanocomposite under visible LED light irradiation. Chemosphere 2020, 254, 126671.

32

Jiang, P. Y.; Yu, K. F.; Yuan, H. B.; He, R.; Sun, M. P.; Tao, F.; Wang, L. B.; Zhu, W. K. Encapsulating Ag nanoparticles into ZIF-8 as an efficient strategy to boost uranium photoreduction without sacrificial agents. J. Mater. Chem. A 2021, 9, 9809–9814.

33

Liu, S.; Wang, Z.; Lu, Y. X.; Li, H. P.; Chen, X. J.; Wei, G. Y.; Wu, T.; Maguire, D. J.; Ye, G.; Chen, J. Sunlight-induced uranium extraction with triazine-based carbon nitride as both photocatalyst and adsorbent. Appl. Catal. B-Environ. 2021, 282, 119523.

34

Li, P.; Wang, J. J.; Peng, T.; Wang, Y.; Liang, J. J.; Pan, D. Q.; Fan, Q. H. Heterostructure of anatase-rutile aggregates boosting the photoreduction of U(VI). Appl. Surf. Sci. 2019, 483, 670–676.

35

Jiang, X. H.; Xing, Q. J.; Luo, X. B.; Li, F.; Zou, J. P.; Liu, S. S.; Li, X.; Wang, X. K. Simultaneous photoreduction of uranium(VI) and photooxidation of arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl. Catal. B-Environ. 2018, 228, 29–38.

36

Guo, Y. D.; Guo, Y. Q.; Wang, X. G.; Li, P.; Kong, L. W.; Wang, G. H.; Li, X. M.; Liu, Y. H. Enhanced photocatalytic reduction activity of uranium(VI) from aqueous solution using the Fe2O3-graphene oxide nanocomposite. Dalton Trans. 2017, 46, 14762–14770.

37

Hu, L.; Yan, X. W.; Zhang, X. J.; Shan, D. Integration of adsorption and reduction for uranium uptake based on SrTiO3/TiO2 electrospun nanofibers. Appl. Surf. Sci. 2018, 428, 819–824.

38

Deng, H.; Li, Z. J.; Wang, L.; Yuan, L. Y.; Lan, J. H.; Chang, Z. Y.; Chai, Z. F.; Shi, W. Q. Nanolayered Ti3C2 and SrTiO3 composites for photocatalytic reduction and removal of uranium(VI). ACS Appl. Nano Mater. 2019, 2, 2283–2294.

39

Chen, T.; Liu, B.; Li, M. X.; Zhou, L.; Lin, D. J.; Ding, X. B.; Lian, J.; Li, J. W.; He, R.; Duan, T. et al. Efficient uranium reduction of bacterial cellulose-MoS2 heterojunction via the synergistically effect of Schottky junction and S-vacancies engineering. Chem. Eng. J. 2021, 406, 126791.

40

Liu, X. N.; Du, P. H.; Pan, W. Y.; Dang, C. Y.; Qian, T. W.; Liu, H. F.; Liu, W.; Zhao, D. Y. Immobilization of uranium(VI) by niobate/titanate nanoflakes heterojunction through combined adsorption and solar-light-driven photocatalytic reduction. Appl. Catal. B-Environ. 2018, 231, 11–22.

41

Lu, S. H.; Zhu, K. R.; Hayat, T.; Alharbi, N. S.; Chen, C. L.; Song, G.; Chen, D. Y.; Sun, Y. B. Influence of carbonate on sequestration of U(VI) on perovskite. J. Hazard. Mater. 2019, 364, 100–107.

42

Xu, Y. C.; Zhang, H. S.; Liu, Q.; Liu, J. Y.; Chen, R. R.; Yu, J.; Zhu, J. H.; Li, R. M.; Wang, J. Surface hybridization of π-conjugate structure cyclized polyacrylonitrile and radial microsphere shaped TiO2 for reducing U(VI) to U(IV). J. Hazard. Mater. 2021, 416, 125812.

43

Singer, D. M.; Chatman, S. M.; Ilton, E. S.; Rosso, K. M.; Banfield, J. F.; Waychunas, G. A. Identification of simultaneous U(VI) sorption complexes and U(IV) nanoprecipitates on the magnetite(111) surface. Environ. Sci. Technol. 2012, 46, 3811–3820.

44

Lei, J.; Liu, H. H.; Wen, F. C.; Jiang, X. Y.; Yuan, C. P.; Chen, Q.; Liu, J. A.; Cui, X. D.; Yang, F.; Zhu, W. K. et al. Tellurium nanowires wrapped by surface oxidized tin disulfide nanosheets achieves efficient photocatalytic reduction of U(VI). Chem. Eng. J. 2021, 426, 130756.

45

Kobayashi, T.; Sun, Y. Y. L.; Prenger, K.; Jiang, D. E.; Naguib, M.; Pruski, M. Nature of terminating hydroxyl groups and intercalating water in Ti3C2Tx MXenes: A study by 1H solid-state NMR and DFT calculations. J. Phys. Chem. C 2020, 124, 13649–13655.

46

Chen, K. Z.; Horstmeier, S.; Nguyen, V. T.; Wang, B.; Crossley, S. P.; Pham, T.; Gan, Z. H.; Hung, I.; White, J. L. Structure and catalytic characterization of a second framework Al(IV) site in zeolite catalysts revealed by NMR at 35.2 T. J. Am. Chem. Soc. 2020, 142, 7514–7523.

47

Quackenbush, N. F.; Paik, H.; Holtz, M. E.; Wahila, M. J.; Moyer, J. A.; Barthel, S.; Wehling, T. O.; Arena, D. A.; Woicik, J. C.; Muller, D. A. et al. Reducing orbital occupancy in VO2 suppresses Mott physics while Peierls distortions persist. Phys. Rev. B 2017, 96, 081103.

48

Wang, H.; Chen, S. C.; Yong, D. Y.; Zhang, X. D.; Li, S.; Shao, W.; Sun, X. S.; Pan, B. C.; Xie, Y. Giant electron–hole interactions in confined layered structures for molecular oxygen activation. J. Am. Chem. Soc. 2017, 139, 4737–4742.

Nano Research
Pages 8810-8818
Cite this article:
Liu H, Lei J, Gong C, et al. In-situ oxidized tungsten disulfide nanosheets achieve ultrafast photocatalytic extraction of uranium through hydroxyl-mediated binding and reduction. Nano Research, 2022, 15(10): 8810-8818. https://doi.org/10.1007/s12274-022-4559-0
Topics:

1078

Views

16

Crossref

16

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 01 February 2022
Revised: 15 May 2022
Accepted: 19 May 2022
Published: 05 July 2022
© Tsinghua University Press 2022
Return