AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Reduction in thermal conductivity of monolayer WS2 caused by substrate effect

Yufeng Zhang1,§Qian Lv2,§Aoran Fan1Lingxiao Yu2Haidong Wang1Weigang Ma1Ruitao Lv2,3( )Xing Zhang1( )
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

§ Yufeng Zhang and Qian Lv contributed equally to this work.

Show Author Information

Graphical Abstract

A significant reduction in thermal conductivity was observed in supported monolayer WS2 at 200–400 K by dual-wavelength flash Raman method. The molecular dynamics simulation and Raman study mutually demonstrated the suppression of acoustic phonons and the peculiar behavior of optical phonons induced by substrate effect.

Abstract

Understanding the substrate and temperature effect on thermal transport properties of transition metal dichalcogenides (TMDs) monolayers are crucial for their future applications. Herein, a dual-wavelength flash Raman (DF-Raman) method is used to measure the thermal conductivity of monolayer WS2 at a temperature range of 200–400 K. High measurement accuracy can be guaranteed in this method since the influence of both the laser absorption coefficient and temperature-Raman coefficient can be eliminated through normalization. The room-temperature thermal conductivity of suspended and supported WS2 are 28.5 ± 2.1 (30.3 ± 2.0) and 15.4 ± 1.9 (16.9 ± 2.1) W/(m·K), respectively, with a ~ 50% reduction due to substrate effect. Molecular dynamics (MD) simulations reveal that the suppression of acoustic phonons is mainly responsible for the striking reduction. The behaviors of optical phonons are also unambiguously investigated using Raman spectroscopy, and the in-plane optical mode, E 2g1(Γ), is surprisingly found to be slightly enhanced while out-of-plane mode, A1g(Γ), is suppressed due to substrate interaction, mutually verified with MD results. Our study provides a solid understanding of the phonon transport behavior of WS2 with substrate interaction, which provides guidance for TMDs-based nanodevices.

Electronic Supplementary Material

Download File(s)
12274_2022_4560_MOESM1_ESM.pdf (702.9 KB)

References

1

Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602.

2

Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518.

3

Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

4

Liu, B. L.; Abbas, A.; Zhou, C. W. Two-dimensional semiconductors: From materials preparation to electronic applications. Adv. Electron. Mater. 2017, 3, 1700045.

5

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

6

Zeng, H. L.; Liu, G. B.; Dai, J. F.; Yan, Y. J.; Zhu, B. R.; He, R. C.; Xie, L.; Xu, S. J.; Chen, X. H.; Yao, W. et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 2013, 3, 1608.

7

Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797.

8

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

9

Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R. T.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447–3454.

10

Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.

11

Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305.

12

Iqbal, M. W.; Iqbal, M. Z.; Khan, M. F.; Shehzad, M. A.; Seo, Y.; Park, J. H.; Hwang, C.; Eom, J. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 2015, 5, 10699.

13

Ovchinnikov, D.; Allain, A.; Huang, Y. S.; Dumcenco, D.; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174–8181.

14

Liu, X.; Hu, J.; Yue, C. L.; Della Fera, N.; Ling, Y.; Mao, Z. Q.; Wei, J. High performance field-effect transistor based on multilayer tungsten disulfide. ACS Nano 2014, 8, 10396–10402.

15

Jiang, J. F.; Zhang, Q. H.; Wang, A. Z.; Zhang, Y.; Meng, F. Q.; Zhang, C. C.; Feng, X. J.; Feng, Y. P.; Gu, L.; Liu, H. et al. A facile and effective method for patching sulfur vacancies of WS2 via nitrogen plasma treatment. Small 2019, 15, 1901791.

16

Peng, B.; Zhang, H.; Shao, H. Z.; Xu, Y. C.; Zhang, X. C.; Zhu, H. Y. Thermal conductivity of monolayer MoS2, MoSe2, and WS2: Interplay of mass effect, interatomic bonding and anharmonicity. RSC Adv. 2016, 6, 5767–5773.

17

Han, D.; Sun, H. Y.; Ding, W. Y.; Chen, Y.; Wang, X. Y.; Cheng, L. Effect of biaxial strain on thermal transport in WS2 monolayer from first principles calculations. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 124, 114312.

18

Li, Q. Y.; Qing, H.; Zhu, T. H.; Zebarjadi, M.; Takahashi, K. Nanostructured and heterostructured 2D materials for thermoelectrics. Eng. Sci. 2020, 13, 24–50.

19

Peimyoo, N.; Shang, J. Z.; Yang, W. H.; Wang, Y. L.; Cong, C. X.; Yu, T. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy. Nano Res. 2015, 8, 1210–1221.

20

Vieira, A. G.; Luz-Lima, C.; Pinheiro, G. S.; Lin, Z.; Rodríguez-Manzo, J. A.; Perea-López, N.; Elías, A. L.; Drndić, M.; Terrones, M.; Terrones, H. et al. Temperature- and power-dependent phonon properties of suspended continuous WS2 monolayer films. Vib. Spectrosc. 2016, 86, 270–276.

21

Malekpour, H.; Balandin, A. A. Raman-based technique for measuring thermal conductivity of graphene and related materials. J. Raman Spectrosc. 2018, 49, 106–120.

22

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

23

Lee, J. U.; Yoon, D.; Kim, H.; Lee, S. W.; Cheong, H. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys. Rev. B 2011, 83, 081419.

24

Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X. S.; Yao, Z.; Huang, R.; Broido, D. et al. Two-dimensional phonon transport in supported graphene. Science 2010, 328, 213–216.

25

Cai, W. W.; Moore, A. L.; Zhu, Y. W.; Li, X. S.; Chen, S. S.; Shi, L.; Ruoff, R. S. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645–1651.

26

Li, Q. Y.; Xia, K. L.; Zhang, J.; Zhang, Y. Y.; Li, Q. Y.; Takahashi, K.; Zhang, X. Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method. Nanoscale 2017, 9, 10784–10793.

27

Zhang, X.; Sun, D. Z.; Li, Y. L.; Lee, G. H.; Cui, X.; Chenet, D.; You, Y. M.; Heinz, T. F.; Hone, J. C. Measurement of lateral and interfacial thermal conductivity of single- and bilayer MoS2 and MoSe2 using refined optothermal Raman technique. ACS Appl. Mater. Interfaces 2015, 7, 25923–25929.

28

Easy, E.; Gao, Y.; Wang, Y. T.; Yan, D. K.; Goushehgir, S. M.; Yang, E. H.; Xu, B. X.; Zhang, X. Experimental and computational investigation of layer-dependent thermal conductivities and interfacial thermal conductance of one- to three-layer WSe2. ACS Appl. Mater. Interfaces 2021, 13, 13063–13071.

29

Gabourie, A. J.; Suryavanshi, S. V.; Farimani, A. B.; Pop, E. Reduced thermal conductivity of supported and encased monolayer and bilayer MoS2. 2D Mater. 2021, 8, 011001.

30

Plimpton, S. Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 1995, 117, 1–19.

31

Jiang, J. W. Misfit strain-induced buckling for transition-metal dichalcogenide lateral heterostructures: A molecular dynamics study. Acta Mech. Solida Sin. 2019, 32, 17–28.

32

Schelling, P. K.; Phillpot, S. R.; Keblinski, P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 2002, 65, 144306.

33

Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 1982, 76, 637–649.

34

Yue, Y. C.; Chen, J. C.; Zhang, Y.; Ding, S. S.; Zhao, F. L.; Wang, Y.; Zhang, D. H.; Li, R. J.; Dong, H. L.; Hu, W. P. et al. Two-dimensional high-quality monolayered triangular WS2 flakes for field-effect transistors. ACS Appl. Mater. Interfaces 2018, 10, 22435–22444.

35

Sourisseau, C.; Cruege, F.; Fouassier, M.; Alba, M. Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2. Chem. Phys. 1991, 150, 281–293.

36

Fan, A. R.; Hu, Y. D.; Ma, W. G.; Wang, H. D.; Zhang, X. Dual-wavelength laser flash Raman spectroscopy method for in-situ measurements of the thermal diffusivity: Principle and experimental verification. J. Therm. Sci. 2019, 28, 159–168.

37

Fan, A. R.; Hu, Y. D.; Wang, H. D.; Ma, W. G.; Zhang, X. Dual-wavelength flash Raman mapping method for measuring thermal diffusivity of suspended 2D nanomaterials. Int. J. Heat Mass Transfer 2019, 143, 118460.

38

Hu, Y. D.; Fan, A. R.; Liu, J. H.; Wang, H. D.; Ma, W. G.; Zhang, X. A dual-wavelength flash Raman method for simultaneously measuring thermal diffusivity and line thermal contact resistance of an individual supported nanowire. Thermochim. Acta 2020, 683, 178473.

39

Zhang, Y. F.; Fan, A. R.; Luo, S. T.; Wang, H. D.; Ma, W. G.; Zhang, X. Suspended 2D anisotropic materials thermal diffusivity measurements using dual-wavelength flash Raman mapping method. Int. J. Heat Mass Transfer 2019, 145, 118795.

40
Fan, A. R. ; Wang, H. D. ; Ma, W. G. ; Zhang, X. Two-step dual-wavelength flash Raman mapping method for measuring thermophysical properties of supported two-dimensional nanomaterials. Heat Transfer Eng. 2021, in press,https://doi.org/10.1080/01457632.2021.2000478.
41

Li, Q. Y.; Zhang, X.; Takahashi, K. Variable-spot-size laser-flash Raman method to measure in-plane and interfacial thermal properties of 2D van der Waals heterostructures. Int. J. Heat Mass Transfer 2018, 125, 1230–1239.

42

Postmus, C.; Ferraro, J. R.; Mitra, S. S. Pressure dependence of infrared eigenfrequencies of KCl and KBr. Phys. Rev. 1968, 174, 983–987.

43

Cui, J. B.; Amtmann, K.; Ristein, J.; Ley, L. Noncontact temperature measurements of diamond by Raman scattering spectroscopy. J. Appl. Phys. 1998, 83, 7929–7933.

44

Liu, M. S.; Bursill, L. A.; Prawer, S.; Nugent, K. W.; Tong, Y. Z.; Zhang, G. Y. Temperature dependence of Raman scattering in single crystal GaN films. Appl. Phys. Lett. 1999, 74, 3125–3127.

45

Li, Q. Y.; Katakami, K.; Ikuta, T.; Kohno, M.; Zhang, X.; Takahashi, K. Measurement of thermal contact resistance between individual carbon fibers using a laser-flash Raman mapping method. Carbon 2019, 141, 92–98.

46

Li, D. W.; Li, Q. Y.; Ikuta, T.; Takahashi, K. Concurrent thermal conductivity measurement and internal structure observation of individual one-dimensional materials using scanning transmission electron microscopy. Appl. Phys. Lett. 2022, 120, 043104.

47

Li, Q. Y.; Feng, T. L.; Okita, W.; Komori, Y.; Suzuki, H.; Kato, T.; Kaneko, T.; Ikuta, T.; Ruan, X. L.; Takahashi, K. Enhanced thermoelectric performance of as-grown suspended graphene nanoribbons. ACS Nano 2019, 13, 9182–9189.

48

Wei, Z. Y.; Yang, J. K.; Bi, K. D.; Chen, Y. F. Mode dependent lattice thermal conductivity of single layer graphene. J. Appl. Phys. 2014, 116, 153503.

49

Qiu, B.; Ruan, X. L. Reduction of spectral phonon relaxation times from suspended to supported graphene. Appl. Phys. Lett. 2012, 100, 193101.

50

Ong, Z. Y.; Pop, E. Effect of substrate modes on thermal transport in supported graphene. Phys. Rev. B 2011, 84, 075471.

51

Chen, J.; Zhang, G.; Li, B. W. Substrate coupling suppresses size dependence of thermal conductivity in supported graphene. Nanoscale 2013, 5, 532–536.

52

Mobaraki, A.; Sevik, C.; Yapicioglu, H.; Çakır, D.; Gülseren, O. Temperature-dependent phonon spectrum of transition metal dichalcogenides calculated from the spectral energy density: Lattice thermal conductivity as an application. Phys. Rev. B 2019, 100, 035402.

53

Zhang, Y. F.; Fan, A. R.; An, M.; Ma, W. G.; Zhang, X. Thermal transport characteristics of supported carbon nanotube: Molecular dynamics simulation and theoretical analysis. Int. J. Heat Mass Transfer 2020, 159, 120111.

54

Chen, D. S.; Chen, H. F.; Hu, S. Q.; Guo, H.; Sharshir, S. W.; An, M.; Ma, W. G.; Zhang, X. Influence of atomic-scale defect on thermal conductivity of single-layer MoS2 sheet. J. Alloys Compd. 2020, 831, 154875.

55

Slack, G. A. The thermal conductivity of nonmetallic crystals. Solid State Phys. 1979, 34, 1–71.

56

Sääskilahti, K.; Oksanen, J.; Volz, S.; Tulkki, J. Frequency-dependent phonon mean free path in carbon nanotubes from nonequilibrium molecular dynamics. Phys. Rev. B 2015, 91, 115426.

57

Sääskilahti, K.; Oksanen, J.; Tulkki, J.; Volz, S. Spectral mapping of heat transfer mechanisms at liquid–solid interfaces. Phys. Rev. E 2016, 93, 052141.

58

Hu, S. Q.; An, M.; Yang, N.; Li, B. W. Manipulating the temperature dependence of the thermal conductivity of graphene phononic crystal. Nanotechnology 2016, 27, 265702.

59

Li, Y. Z.; Li, X. S.; Yu, T.; Yang, G. C.; Chen, H. Y.; Zhang, C.; Feng, Q. S.; Ma, J. G.; Liu, W. Z.; Xu, H. Y. et al. Accurate identification of layer number for few-layer WS2 and WSe2 via spectroscopic study. Nanotechnology 2018, 29, 124001.

60

Shi, W.; Lin, M. L.; Tan, Q. H.; Qiao, X. F.; Zhang, J.; Tan, P. H. Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2. 2D Mater. 2016, 3, 025016.

61

Mlack, J. T.; Das, P. M.; Danda, G.; Chou, Y. C.; Naylor, C. H.; Lin, Z.; López, N. P.; Zhang, T. Y.; Terrones, M.; Johnson, A. T. C. et al. Transfer of monolayer TMD WS2 and Raman study of substrate effects. Sci. Rep. 2017, 7, 43037.

62

Zhang, L. N.; Lu, Z. M.; Song, Y.; Zhao, L.; Bhatia, B.; Bagnall, K. R.; Wang, E. N. Thermal expansion coefficient of monolayer molybdenum disulfide using micro-Raman spectroscopy. Nano Lett. 2019, 19, 4745–4751.

63

Gu, H.; Chen, K. B.; Gao, X. D.; Xu, K.; Lu, Y. M.; Liu, X. K. Temperature- and position-dependent Raman study on carrier concentration of large-area monolayer WS2. Appl. Surf. Sci. 2019, 481, 241–245.

64

Berciaud, S.; Ryu, S.; Brus, L. E.; Heinz, T. F. Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 2009, 9, 346–352.

65

Buscema, M.; Steele, G. A.; Van Der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.

66

Sohier, T.; Ponomarev, E.; Gibertini, M.; Berger, H.; Marzari, N.; Ubrig, N.; Morpurgo, A. F. Enhanced electron–phonon interaction in multivalley materials. Phys. Rev. X 2019, 9, 031019.

67

Kuball, M.; Hayes, J. M.; Shi, Y.; Edgar, J. H. Phonon lifetimes in bulk AlN and their temperature dependence. Appl. Phys. Lett. 2000, 77, 1958–1960.

68

Gu, X. K.; Yang, R. G. Phonon transport in single-layer transition metal dichalcogenides: A first-principles study. Appl. Phys. Lett. 2014, 105, 131903.

69

Zobeiri, H.; Wang, R. D.; Zhang, Q. Y.; Zhu, G. J.; Wang, X. W. Hot carrier transfer and phonon transport in suspended nm WS2 films. Acta Mater. 2019, 175, 222–237.

70

Jiang, P. Q.; Qian, X.; Gu, X. K.; Yang, R. G. Probing anisotropic thermal conductivity of transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se) using time-domain thermoreflectance. Adv. Mater. 2017, 29, 1701068.

71

Ghosh, S.; Bao, W. Z.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 2010, 9, 555–558.

72

Qiu, B.; Ruan, X. L. Thermal conductivity prediction and analysis of few-quintuple Bi2Te3 thin films: A molecular dynamics study. Appl. Phys. Lett. 2010, 97, 183107.

73

Bae, J. J.; Jeong, H. Y.; Han, G. H.; Kim, J.; Kim, H.; Kim, M. S.; Moon, B. H.; Lim, S. C.; Lee, Y. H. Thickness-dependent in-plane thermal conductivity of suspended MoS2 grown by chemical vapor deposition. Nanoscale 2017, 9, 2541–2547.

74

Yuan, P. Y.; Wang, R. D.; Wang, T. Y.; Wang, X. W.; Xie, Y. S. Nonmonotonic thickness-dependence of in-plane thermal conductivity of few-layered MoS2: 2.4 to 37.8 nm. Phys. Chem. Chem. Phys. 2018, 20, 25752–25761.

75

Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Walker, A. R. H.; Xing, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986–993.

76

Taube, A.; Judek, J.; Łapińska, A.; Zdrojek, M. Temperature-dependent thermal properties of supported MoS2 monolayers. ACS Appl. Mater. Interfaces 2015, 7, 5061–5065.

77

Reig, D. S.; Varghese, S.; Farris, R.; Block, A.; Mehew, J. D.; Hellman, O.; Woźniak, P.; Sledzinska, M.; El Sachat, A.; Chávez-Ángel, E. et al. Unraveling heat transport and dissipation in suspended MoSe2 from bulk to monolayer. Adv. Mater. 2022, 34, 2108352.

Nano Research
Pages 9578-9587
Cite this article:
Zhang Y, Lv Q, Fan A, et al. Reduction in thermal conductivity of monolayer WS2 caused by substrate effect. Nano Research, 2022, 15(10): 9578-9587. https://doi.org/10.1007/s12274-022-4560-7
Topics:

1219

Views

17

Crossref

14

Web of Science

18

Scopus

0

CSCD

Altmetrics

Received: 14 February 2022
Revised: 16 May 2022
Accepted: 19 May 2022
Published: 06 July 2022
© Tsinghua University Press 2022
Return