Graphical Abstract

Triboelectric interfaces have already been extensively researched in the area of human–machine interaction owing to their self-sustainability, low cost, easy manufacturing, and diverse configurations. However, some limitations (e.g., a large number of electrodes, multiple lines, and chunks) observed in previous works hinder the further development of human–machine interaction applications. Herein, a triboelectric encoding interface is proposed by designing the reverse polarity of the tribo-layers to encode the triboelectric output signals. Owing to the inversion of the tribo-layers and the number of strip electrodes, this encoding method can realize multipurpose interactive commands by using fewer electrodes and a simple structure only in one macroscopic triboelectric device, which greatly reduces the size of the device as well as the influence of external factors on the coded signal output. As a demonstration, a ring with the patterned triboelectric interface (15 mm × 20 mm) achieves slide presentation and remote electric device control. In addition, the triboelectric sensor has good sensitivity (1.55 V/N) and durability (> 30,000 cycles). This new encoding mode shows the high applicability of the operation mode in diversified interactive applications, which provides more design strategies for intelligent control.
Huang, Y.; Fan, X. Y.; Chen, S. C.; Zhao, N. Emerging technologies of flexible pressure sensors: Materials, modeling, devices, and manufacturing. Adv. Funct. Mater. 2019, 29, 1808509.
Wang, X. D.; Dong, L.; Zhang, H. L.; Yu, R. M.; Pan, C. F.; Wang, Z. L. Recent progress in electronic skin. Adv. Sci. (Weinh.) 2015, 2, 1500169.
Singh, H. P.; Kumar, P. Developments in the human machine interface technologies and their applications: A review. J. Med. Eng. Technol. 2021, 45, 552–573.
Heng, W. Z.; Solomon, S.; Gao, W. Flexible electronics and devices as human–machine interfaces for medical robotics. Adv. Mater. 2022, 34, 2107902.
Zhao, X.; Askari, H.; Chen, J. Nanogenerators for smart cities in the era of 5G and internet of things. Joule 2021, 5, 1391–1431.
Esposito, D.; Andreozzi, E.; Gargiulo, G. D.; Fratini, A.; D'Addio, G.; Naik, G. R.; Bifulco, P. A piezoresistive array armband with reduced number of sensors for hand gesture recognition. Front. Neurorobot. 2019, 13, 114.
Wang, J.; Xu, J. M.; Chen, T.; Song, L. L.; Zhang, Y. L.; Lin, Q. H.; Wang, M. J.; Wang, F. X.; Ma, N. H.; Sun, L. N. Wearable human–machine interface based on the self-healing strain sensors array for control interface of unmanned aerial vehicle. Sens. Actuat. A:Phys. 2021, 321, 112583.
Zhang, H. J.; Han, W. Q.; Xu, K.; Zhang, Y.; Lu, Y. F.; Nie, Z. T.; Du, Y. H.; Zhu, J. X.; Huang, W. Metallic sandwiched-aerogel hybrids enabling flexible and stretchable intelligent sensor. Nano Lett. 2020, 20, 3449–3458.
Zhao, S. F.; Ran, W. H.; Wang, D. P.; Yin, R. Y.; Yan, Y. X.; Jiang, K.; Lou, Z.; Shen, G. Z. 3D dielectric layer enabled highly sensitive capacitive pressure sensors for wearable electronics. ACS Appl. Mater. Interfaces 2020, 12, 32023–32030.
Zulfiqar, M. H.; Hassan, M. U.; Zubair, M.; Mehmood, M. Q.; Riaz, K. Pencil-on-paper-based touchpad for ecofriendly and reusable human–machine interface. IEEE Sens. Lett. 2021, 5, 5500604.
Deng, W. L.; Yang, T.; Jin, L.; Yan, C.; Huang, H. C.; Chu, X.; Wang, Z. X.; Xiong, D.; Tian, G.; Gao, Y. Y. et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy 2019, 55, 516–525.
Gong, S. B.; Zhang, B. W.; Zhang, J. X.; Wang, Z. L.; Ren, K. L. Biocompatible poly(lactic acid)-based hybrid piezoelectric and electret nanogenerator for electronic skin applications. Adv. Funct. Mater. 2020, 30, 1908724.
Wang, H. S.; Hong, S. K.; Han, J. H.; Jung, Y. H.; Jeong, H. K.; Im, T. H.; Jeong, C. K.; Lee, B. Y.; Kim, G.; Yoo, C. D. et al. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 2021, 7, eabe5683.
He, Q.; Wu, Y. F.; Feng, Z. P.; Sun, C. C.; Fan, W. J.; Zhou, Z. H.; Meng, K. Y.; Fan, E. D.; Yang, J. Triboelectric vibration sensor for a human–machine interface built on ubiquitous surfaces. Nano Energy 2019, 59, 689–696.
Zhou, Z. H.; Chen, K.; Li, X. S.; Zhang, S. L.; Wu, Y. F.; Zhou, Y. H.; Meng, K. Y.; Sun, C. C.; He, Q.; Fan, W. J. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578.
Dong, B. W.; Shi, Q. F.; Yang, Y. Q.; Wen, F.; Zhang, Z. X.; Lee, C. Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 2021, 79, 105414.
Libanori, A.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156.
Ding, X. C.; Zhong, W. B.; Jiang, H. Q.; Li, M. F.; Chen, Y. L.; Lu, Y.; Ma, J.; Yadav, A.; Yang, L. Y.; Wang, D. Highly accurate wearable piezoresistive sensors without tension disturbance based on weaved conductive yarn. ACS Appl. Mater. Interfaces 2020, 12, 35638–35646.
Cao, M. H.; Fan, S. Q.; Qiu, H. W.; Su, D. L.; Li, L.; Su, J. CB nanoparticles optimized 3D wearable graphene multifunctional piezoresistive sensor framed by loofah sponge. ACS Appl. Mater. Interfaces 2020, 12, 36540–36547.
Mishra, R. B.; El-Atab, N.; Hussain, A. M.; Hussain, M. M. Recent progress on flexible capacitive pressure sensors: From design and materials to applications. Adv. Mater. Technol. 2021, 6, 2001023.
Jiang, P. P.; Qin, H. L.; Dai, J.; Yu, S. H.; Cong, H. P. Ultrastretchable and self-healing conductors with double dynamic network for omni-healable capacitive strain sensors. Nano Lett. 2022, 22, 1433–1442.
Mahapatra, S. D.; Mohapatra, P. C.; Aria, A. I.; Christie, G.; Mishra, Y. K.; Hofmann, S.; Thakur, V. K. Piezoelectric materials for energy harvesting and sensing applications: Roadmap for future smart materials. Adv. Sci. (Weinh.) 2021, 8, 2100864.
Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.
Kim, W. G.; Kim, D. W.; Tcho, I. W.; Kim, J. K.; Kim, M. S.; Choi, Y. K. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano 2021, 15, 258–287.
Chen, C. Y.; Chen, L. J.; Wu, Z. Y.; Guo, H. Y.; Yu, W. D.; Du, Z. Q.; Wang, Z. L. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors. Mater. Today 2020, 32, 84–93.
Chen, G. R.; Xiao, X.; Zhao, X.; Tat, T.; Bick, M.; Chen, J. Electronic textiles for wearable point-of-care systems. Chem. Rev. 2022, 122, 3259–3291.
Zhang, S. L.; Bick, M.; Xiao, X.; Chen, G. R.; Nashalian, A.; Chen, J. Leveraging triboelectric nanogenerators for bioengineering. Matter 2021, 4, 845–887.
Chen, J. L.; Wen, X. J.; Liu, X.; Cao, J. Q.; Ding, Z. H.; Du, Z. Q. Flexible hierarchical helical yarn with broad strain range for self-powered motion signal monitoring and human–machine interactive. Nano Energy 2021, 80, 105446.
Gao, L. X.; Hu, D. L.; Qi, M. K.; Gong, J.; Zhou, H.; Chen, X.; Chen, J. F.; Cai, J.; Wu, L. K.; Hu, N. et al. A double-helix-structured triboelectric nanogenerator enhanced with positive charge traps for self-powered temperature sensing and smart-home control systems. Nanoscale 2018, 10, 19781–19790.
Ding, W. B.; Wang, A. C.; Wu, C. S.; Guo, H. Y.; Wang, Z. L. Human–machine interfacing enabled by triboelectric nanogenerators and tribotronics. Adv. Mater. Technol. 2019, 4, 1800487.
Hou, C.; Geng, J. J.; Yang, Z.; Tang, T. Y.; Sun, Y. Y.; Wang, F. X.; Liu, H. C.; Chen, T.; Sun, L. N. A delta-parallel-inspired human machine interface by using self-powered triboelectric nanogenerator toward 3D and VR/AR manipulations. Adv. Mater. Technol. 2021, 6, 2000912.
Yun, J.; Jayababu, N.; Kim, D. Self-powered transparent and flexible touchpad based on triboelectricity towards artificial intelligence. Nano Energy 2020, 78, 105325.
Zhao, G. Q.; Yang, J.; Chen, J.; Zhu, G.; Jiang, Z. D.; Liu, X. Y.; Niu, G. X.; Wang, Z. L.; Zhang, B. Keystroke dynamics identification based on triboelectric nanogenerator for intelligent keyboard using deep learning method. Adv. Mater. Technol. 2019, 4, 1800167.
Jeon, S. B.; Park, S. J.; Kim, W. G.; Tcho, I. W.; Jin, I. K.; Han, J. K.; Kim, D.; Choi, Y. K. Self-powered wearable keyboard with fabric based triboelectric nanogenerator. Nano Energy 2018, 53, 596–603.
Zhang, B. S.; Tang, Y. J.; Dai, R. R.; Wang, H. Y.; Sun, X. P.; Qin, C.; Pan, Z. F.; Liang, E. J.; Mao, Y. C. Breath-based human–machine interaction system using triboelectric nanogenerator. Nano Energy 2019, 64, 103953.
Rana, S. M. S.; Rahman, M. T.; Salauddin, M.; Sharma, S.; Maharjan, P.; Bhatta, T.; Cho, H.; Park, C.; Park, J. Y. Electrospun PVDF-TrFE/MXene nanofiber mat-Based triboelectric nanogenerator for smart home appliances. ACS Appl. Mater. Interfaces 2021, 13, 4955–4967.
Pu, X. J.; Tang, Q.; Chen, W. S.; Huang, Z. Y.; Liu, G. L.; Zeng, Q. X.; Chen, J.; Guo, H. Y.; Xin, L. M.; Hu, C. G. Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing. Nano Energy 2020, 76, 105047.
Sun, J. L.; Chang, Y.; Dong, L.; Zhang, K. K.; Hua, Q. L.; Zang, J. H.; Chen, Q. S.; Shang, Y. Y.; Pan, C. F.; Shan, C. X. MXene enhanced self-powered alternating current electroluminescence devices for patterned flexible displays. Nano Energy 2021, 86, 106077.
Pu, X. J.; Guo, H. Y.; Tang, Q.; Chen, J.; Feng, L.; Liu, G. L.; Wang, X.; Xi, Y.; Hu, C. G.; Wang, Z. L. Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor. Nano Energy 2018, 54, 453–460.
Shi, Q. F.; Lee, C. Self-powered bio-inspired spider-net-coding interface using single-electrode triboelectric nanogenerator. Adv. Sci. (Weinh.) 2019, 6, 1900617.
Shi, Q. F.; Zhang, Z. X.; Chen, T.; Lee, C. Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch. Nano Energy 2019, 62, 355–366.
Shi, Q. F.; Qiu, C. K.; He, T. Y. Y.; Wu, F.; Zhu, M. L.; Dziuban, J. A.; Walczak, R.; Yuce, M. R.; Lee, C. Triboelectric single-electrode-output control interface using patterned grid electrode. Nano Energy 2019, 60, 545–556.
Yoon, H. J.; Ryu, H.; Kim, S. W. Sustainable powering triboelectric nanogenerators: Approaches and the path towards efficient use. Nano Energy 2018, 51, 270–285.
Liao, W. Q.; Liu, X. K.; Li, Y. Q.; Xu, X.; Jiang, J.; Lu, S. R.; Bao, D. Q.; Wen, Z.; Sun, X. H. Transparent, stretchable, temperature-stable and self-healing ionogel-based triboelectric nanogenerator for biomechanical energy collection. Nano Res. 2022, 15, 2060–2068.
Bai, Z. Q.; He, T. Y. Y.; Zhang, Z. X.; Xu, Y. L.; Zhang, Z. X.; Shi, Q. F.; Yang, Y. Q.; Zhou, B. G.; Zhu, M. L.; Guo, J. S. et al. Constructing highly tribopositive elastic yarn through interfacial design and assembly for efficient energy harvesting and human-interactive sensing. Nano Energy 2022, 94, 106956–106968.
Ren, Z. W.; Nie, J. H.; Shao, J. J.; Lai, Q. S.; Wang, L. F.; Chen, J.; Chen, X. Y.; Wang, Z. L. Fully elastic and metal-free tactile sensors for detecting both normal and tangential forces based on triboelectric nanogenerators. Adv. Funct. Mater. 2018, 28, 1802989.