Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Developing efficient catalysts with high activity and durability via alloying strategy is essential to the energy conversion in various electro-catalytic reactions. Among the different alloy structures, intermetallic compounds (IMCs) have received much attention recently due to the special geometric and electronic effects and outstanding activity and durability, endowed by their ordered structure. Herein, A series of hollow-structured nanocrystals of Pd-Sn alloy, including face-centered cubic solid solution of Pd(Sn), IMCs of Pd2Sn, and IMCs of Pd3Sn2, are fabricated via a solvothermal strategy by varying the precursor ratio of Pd and Sn. The structure difference of the nanocrystals has been investigated via combined electron microscopy and spectroscopy, assisted by local elemental separation analysis and X-ray spectroscopy. Among all, Pd3Sn2 IMCs show outstanding methanol oxidation reaction (MOR) activity in terms of mass activity (1.3 A·mgPd−1) and specific activity (5.03 mA·cm−2). Through density functional theory (DFT) simulation calculations on three different Pd-Sn alloy models, the performance has been well understood. As compared with Pd(Sn) and Pd2Sn, the high MOR kinetics on Pd3Sn2 is featured by its weaker CO adsorption and favorable CO–OH co-adsorption.
Kua, J.; Goddard, W. A. Oxidation of methanol on 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to direct methanol fuel cells. J. Am. Chem. Soc. 1999, 121, 10928–10941.
Hui, F.; Li, C.; Chen, Y. H.; Wang, C. H.; Huang, J. P.; Li, A.; Li, W.; Zou, J.; Han, X. D. Understanding the structural evolution of Au/WO2.7 compounds in hydrogen atmosphere by atomic scale in situ environmental TEM. Nano Res. 2020, 13, 3019–3024.
Liu, C.; Chen, Z. L.; Rao, D. W.; Zhang, J. F.; Liu, Y. W.; Chen, Y. N.; Deng, Y. D.; Hu, W. B. Behavior of gold-enhanced electrocatalytic performance of NiPtAu hollow nanocrystals for alkaline methanol oxidation. Sci. China Mater. 2021, 64, 611–620.
Xu, C. J.; Zhang, Y.; Chen, J.; Li, S.; Zhang, Y. W.; Qin, G. W. Carbon–CeO2 interface confinement enhances the chemical stability of Pt nanocatalyst for catalytic oxidation reactions. Sci. China Mater. 2021, 64, 128–136.
Lou, W. H.; Ali, A.; Shen, P. K. Recent development of Au arched Pt nanomaterials as promising electrocatalysts for methanol oxidation reaction. Nano Res. 2022, 15, 18–37.
Zhan, C. Y.; Li, H. Q.; Li, X. M.; Jiang, Y. Q.; Xie, Z. X. Synthesis of PdH0.43 nanocrystals with different surface structures and their catalytic activities towards formic acid electro-oxidation. Sci. China Mater. 2020, 63, 375–382.
Chen, A. C.; Holt-Hindle, P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 2010, 110, 3767–3804.
Wang, W. N.; Gao, Y. C.; Jia, X. D.; Xi, K. A novel Au-Pt@PPy(polypyrrole) coral-like structure: Facile synthesis, high SERS effect, and good electro catalytic activity. J. Colloid Interface Sci. 2013, 396, 23–28.
Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.
Kloke, A.; von Stetten, F.; Zengerle, R.; Kerzenmacher, S. Strategies for the fabrication of porous platinum electrodes. Adv. Mater. 2011, 23, 4976–5008.
Li, C. L.; Sato, T.; Yamauchi, Y. Electrochemical synthesis of one-dimensional mesoporous Pt nanorods using the assembly of surfactant micelles in confined space. Angew. Chem., Int. Ed. 2013, 52, 8050–8053.
Li, Z. Y.; Liang, Y. J.; Jiang, S. P.; Shan, X. D.; Lin, M. L.; Xu, C. W. Electrooxidation of methanol and ethylene glycol mixture on platinum and palladium in alkaline medium. Fuel Cells 2012, 12, 677–682.
Qiu, Y.; Hu, Z.; Li, H.; Ren, Q.; Chen, Y.; Hu, S. Hybrid electrocatalyst Ag/Co/C via flash Joule heating for oxygen reduction reaction in alkaline media. Chem. Eng. J. 2022, 430, 132769.
Furukawa, S.; Komatsu, T. Intermetallic compounds: Promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal. 2017, 7, 735–765.
Xu, H.; Yan, B.; Zhang, K.; Wang, J.; Li, S. M.; Wang, C. Q.; Shiraishi, Y.; Du, Y. K.; Yang, P. Facile fabrication of novel PdRu nanoflowers as highly active catalysts for the electrooxidation of methanol. J. Colloid Interface Sci. 2017, 505, 1–8.
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.
Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p–d Orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.
Qiu, Y. J.; Zhang, J.; Jin, J.; Sun, J. Q.; Tang, H. L.; Chen, Q. Q.; Zhang, Z. D.; Sun, W. M.; Meng, G.; Xu, Q. et al. Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction. Nat. Commun. 2021, 12, 5273.
Xiao, W. P.; Lei, W.; Gong, M. X.; Xin, H. L.; Wang, D. Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis. ACS Catal. 2018, 8, 3237–3256.
Espinosa, M. M. F.; Cheng, T.; Xu, M. J.; Abatemarco, L.; Choi, C.; Pan, X. Q.; Goddard III, W. A.; Zhao, Z. P.; Huang, Y. Compressed intermetallic PdCu for enhanced electrocatalysis. ACS Energy Lett. 2020, 5, 3672–3680.
Kim, H. Y.; Kim, J. M.; Ha, Y.; Woo, J.; Byun, A.; Shin, T. J.; Park, K. H.; Jeong, H. Y.; Kim, H.; Kim, J. Y. et al. Activity origin and multifunctionality of Pt-based intermetallic nanostructures for efficient electrocatalysis. ACS Catal. 2019, 9, 11242–11254.
Kumar, A.; Deka, S. PdSn hollow alloy nanoparticles prepared by in-situ galvanic replacement process for exclusive hydrogen evolution reaction and durable electrocatalysis. Appl. Catal. A: General 2020, 599, 117575.
Shan, X. Y.; Sui, N.; Liu, W. G.; Liu, M. H.; Liu, J. In situ generation of supported palladium nanoparticles from a Pd/Sn/S chalcogel and applications in 4-nitrophenol reduction and Suzuki coupling. J. Mater. Chem. A 2019, 7, 4446–4450.
Wu, Z. L.; Shih, Y. J. Bimetallic palladium-tin nanoclusters, PdSn (200) and PdSn (101), templated with cationic surfactant for electrochemical denitrification toward N2 and NH4+ selectivity. Chem. Eng. J. 2022, 433, 133852.
Freakley, S. J.; He, Q.; Harrhy, J. H.; Lu, L.; Crole, D. A.; Morgan, D. J.; Ntainjua, E. N.; Edwards, J. K.; Carley, A. F.; Borisevich, A. Y. et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 2016, 351, 965–968.
Xaba, N.; Modibedi, R. M.; Mathe, M. K.; Khotseng, L. E. Pd, PdSn, PdBi, and PdBiSn nanostructured thin films for the electro-oxidation of ethanol in alkaline media. Electrocatalysis 2019, 10, 332–341.
Song, T. X.; Gao, F.; Zhang, Y. P.; Yu, P. E.; Wang, C.; Shiraishi, Y.; Li, S. J.; Wang, C. Q.; Guo, J.; Du, Y. K. Shape-controlled PdSn alloy as superior electrocatalysts for alcohol oxidation reactions. J. Taiwan Inst. Chem. Eng. 2019, 101, 167–176.
Du, W. X.; Mackenzie, K. E.; Milano, D. F.; Deskins, N. A.; Su, D.; Teng, X. W. Palladium-tin alloyed catalysts for the ethanol oxidation reaction in an alkaline medium. ACS Catal. 2012, 2, 287–297.
You, H. M.; Gao, F.; Wang, C.; Li, J.; Zhang, K. W.; Zhang, Y. P.; Du, Y. K. Rich grain boundaries endow networked PdSn nanowires with superior catalytic properties for alcohol oxidation. Nanoscale 2021, 13, 17939–17944.
Zhang, Y.; Huang, B. L.; Shao, Q.; Feng, Y. G.; Xiong, L. K.; Peng, Y.; Huang, X. Q. Defect engineering of palladium-tin nanowires enables efficient electrocatalysts for fuel cell reactions. Nano Lett. 2019, 19, 6894–6903.
Chen, Q. L.; Yang, Y. N.; Cao, Z. M.; Kuang, Q.; Du, G. F.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Excavated cubic platinum-tin alloy nanocrystals constructed from ultrathin nanosheets with enhanced electrocatalytic activity. Angew. Chem., Int. Ed. 2016, 55, 9021–9025.
Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science 2004, 304, 711–714.
Shapiro, A.; Jang, Y.; Horani, F.; Kauffmann, Y.; Lifshitz, E. Kirkendall effect: Main growth mechanism for a new SnTe/PbTe/SnO2 nano-heterostructure. Chem. Mater. 2018, 30, 3141–3149.
Anderson, B. D.; Tracy, J. B. Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange. Nanoscale 2014, 6, 12195–12216.
Guo, X. Y.; Hu, Z.; Lv, J. X.; Li, H.; Zhang, Q. H.; Gu, L.; Zhou, W.; Zhang, J. W.; Hu, S. Fine-tuning of Pd-Rh core–shell catalysts by interstitial hydrogen doping for enhanced methanol oxidation. Nano Res. 2022, 15, 1288–1294.