AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Empowering magnetic strong coupling and its application for nonlinear refractive index sensing

Song Sun1,2,§( )Dong Li1,2,§Dacheng Wang1,2Zheng Feng1,2Wei Tan1,2Lin Wu3,4( )
Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China
Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China
Science, Mathematics and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
Song Sun and Dong Li contributed equally to this work.
Show Author Information

Graphical Abstract

A delicately designed antenna-in-cavity configuration could enable quantum strong coupling for magnetic dipole emitters with a clear Rabi-splitting spectrum, exhibiting an exotic nonlinear sensitivity to the environmental refractive index.

Abstract

In the context of quantum strong coupling, the magnetic dipole (MD) emitters are largely overlooked due to the rarity of MD source and the non-magnetic nature of matters at high frequencies. Based on a semi-classic model, we theoretically demonstrate magnetic strong coupling between an MD cluster (Er3+: 4I13/24I15/2 transition at 1,550 nm) and an antenna-in-cavity structure. It is found that placing the plasmonic diabolo/s-diabolo nanoantenna, which supports strong electric/magnetic dipole mode, inside a dielectric cavity could largely improve the strong coupling coefficient while suppressing the cavity loss rate compared to the bare nanoantenna counterparts, empowering the magnetic quantum strong coupling at a level of 104 emitters, which is remarkable considering the weak MD dipole momentum and small hotspot region at high frequency. Furthermore, the two Rabi resonance branches undergo highly asymmetrical changes upon a small variation on the environmental refractive index, which leads to an exotic exponential sensitivity profile by tracing the ratio between the two resonances widths. The proposed magnetic strong coupling for nonlinear refractive index sensing may add a new category to quantum plasmonic sensors.

Electronic Supplementary Material

Download File(s)
12274_2022_4566_MOESM1_ESM.pdf (1.2 MB)

References

1

Monroe, C. Quantum information processing with atoms and photons. Nature 2002, 416, 238–246.

2

Kimble, H. J. The quantum internet. Nature 2008, 453, 1023–1030.

3

Kongsuwan, N.; Xiong, X.; Bai, P.; You, J. B.; Png, C. E.; Wu, L.; Hess, O. Quantum plasmonic immunoassay sensing. Nano Lett. 2019, 19, 5853–5861.

4

Zhao, L. Y.; Shang, Q. Y.; Li, M. L.; Liang, Y.; Li, C.; Zhang, Q. Strong exciton–photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors. Nano Res. 2021, 14, 1937–1954.

5

You, J. B.; Xiong, X.; Bai, P.; Zhou. Z. K.; Ma, R. M.; Yang, W. L.; Lu, Y. K.; Xiao, Y. F.; Png, C. E.; Garcia-Vidal, F. J. et al. Reconfigurable photon sources based on quantum plexcitonic systems. Nano Lett. 2020, 20, 4645–4652.

6

Rivera, N.; Kaminer, I. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys. 2020, 2, 538–561.

7

Tame, M. S.; McEnery, K. R.; Özdemir, Ş. K.; Lee, J.; Maier, S. A.; Kim, M. S. Quantum plasmonics. Nat. Phys. 2013, 9, 329–340.

8

Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photonics 2015, 9, 427–435.

9

Ma, L.; Yu, P.; Wang, W. H.; Kuo, H. C.; Govorov, A. O.; Sun, S.; Wang, Z. M. Nanoantenna-enhanced light-emitting diodes: Fundamental and recent progress. Laser Photon. Rev. 2021, 15, 2000367.

10

Luo, Y.; Zhao, J. Plasmon–exciton interaction in colloidally fabricated metal nanoparticle-quantum emitter nanostructures. Nano Res. 2019, 12, 2164–2171.

11

Forn-Díaz, P.; Lamata, L.; Rico, R.; Kono, J.; Solano, E. Ultrastrong coupling regimes of light–matter interaction. Rev. Mod. Phys. 2019, 91, 025005.

12

Santhosh, K.; Bitton, O.; Chuntonov, L.; Haran, G. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 2016, 7, ncomms11823.

13

Zhao, Q.; Zhou, W. J.; Deng, Y. H.; Zheng, Y. Q.; Shi, Z. H.; Ang, L. K.; Zhou, Z. K.; Wu, L. Plexcitonic strong coupling: Unique features, applications, and challenges. J. Phys. D:Appl. Phys. 2022, 55, 203002.

14
Zhang X. W. Wu L. S. Wang X. He S. L. Hu H. W. Shi G. C. Zhang X. W. Shang J. Z. Yu T. Monolayer  tungsten disulfide in photonic environment: Angle-resolved weak and strong light–matter coupling Nano Res. 2022 15 5619 5625 10.1007/s12274-022-4143-7

Zhang, X. W.; Wu, L. S.; Wang, X.; He, S. L.; Hu, H. W.; Shi, G. C.; Zhang, X. W.; Shang, J. Z.; Yu, T. Monolayer tungsten disulfide in photonic environment: Angle-resolved weak and strong light–matter coupling. Nano Res. 2022, 15, 5619–5625.

15

Zengin, G.; Wersäll, M.; Nilsson, S.; Antosiewicz, T. J.; Käll, M.; Shegai, T. Realizing strong light–matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett. 2015, 114, 157401.

16

Xiong, X.; You, J. B.; Bai, P.; Png, C. E.; Kai, Z. Z.; Wu, L. Ultrastrong coupling in single plexcitonic nanocubes. Nanophotonics 2020, 9, 257–266.

17

Zhang, W. B.; You, J. B.; Liu, J. F.; Xiong, X.; Li, Z. X.; Png, C. E.; Wu, L.; Qiu, C. W.; Zhou, Z. K. Steering room-temperature plexcitonic strong coupling: A diexcitonic perspective. Nano Lett. 2021, 21, 8979–8986.

18

Chikkaraddy, R.; de Nijs, B.; Benz, F.; Barrow, S. J.; Scherman, O. A.; Rosta, E.; Demetriadou, A.; Fox, P.; Hess, O.; Baumberg, J. J. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016, 535, 127–130.

19

Kongsuwan, N.; Demetriadou, A.; Chikkaraddy, R.; Benz, F.; Turek, V. A.; Keyser, U. F.; Baumberg, J. J.; Hess, O. Suppressed quenching and strong-coupling of Purcell-enhanced single-molecule emission in plasmonic nanocavities. ACS Photonics 2018, 5, 186–191.

20

Peter, E.; Senellart, P.; Martrou, D.; Lemaître, A.; Hours, J.; Gérard, J. M; Bloch, J. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 2015, 95, 067401.

21

Kolesov, R.; Grotz, B.; Balasubramanian, G.; Stöhr, R. J.; Nicolet, A. A. L.; Hemmer, P. R.; Jelezko, F.; Wrachtrup, J. Wave-particle duality of single surface plasmon polaritons. Nat. Phys. 2009, 5, 470–474.

22

Salomon, A.; Gordon, R. J.; Prior, Y.; Seideman, T.; Sukharev, M. Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film. Phys. Rev. Lett. 2012, 109, 073002.

23

Shi, L.; Hakala, T. K.; Rekola, H. T.; Martikainen, J. P.; Moerland, R. J.; Törmä, P. Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes. Phys. Rev. Lett. 2014, 112, 153002.

24

Hu, M. L.; Yang, Z. J.; Du, X. J.; Ma, L.; He, J. Strong couplings between magnetic quantum emitters and subwavelength all-dielectric resonators with whispering gallery modes. Opt. Express 2021, 29, 26028–26038.

25

Taminiau, T. H.; Karaveli, S.; van Hulst, N. F.; Zia, R. Quantifying the magnetic nature of light emission. Nat. Commun. 2012, 3, 979.

26

Zhang, X. W.; Zhao, Z.; Zhang, X.; Cordes, D. B.; Weeks, B.; Qiu, B. S.; Madanan, K.; Sardar, D.; Chaudhuri, J. Magnetic and optical properties of NaGdF4: Nd3+, Yb3+, Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window. Nano Res. 2015, 8, 636–648.

27

Brewer, N. R.; Buckholtz, Z. N.; Simmons, Z. J.; Mueller, E. A.; Yavuz, D. D. Coherent magnetic response at optical frequencies using atomic transitions. Phys. Rev. X 2017, 7, 011005.

28
Landau, L. D.; Pitaevskii, L. P.; Lifshitz, E. M. Electrodynamics of Continuous Media, 2nd ed.; Pergamon Press: Oxford, 1984.
29

Kumar, A.; Asadollahbaik, A.; Kim, J.; Lahlil, K.; Thiele, S.; Herkommer, A. M.; Chormaic, S. N.; Kim, J.; Gacoin, T.; Giessen, H. et al. Emission spectroscopy of NaYF4: Eu nanorods optically trapped by Fresnel lens fibers. Photon. Res. 2022, 10, 332–339.

30

Aigouy, L.; Cazé, A.; Gredin, P.; Mortier, M.; Carminati, R. Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale. Phys. Rev. Lett. 2014, 113, 076101.

31

Tittel, W.; Afzelius, M.; Chaneliére, T.; Cone, R. L.; Kröll, S.; Moiseev, S. A.; Sellars, M. Photon-echo quantum memory in solid state systems. Laser Photon. Rev. 2010, 4, 244–267.

32

Giessen, H.; Vogelgesang, R. Glimpsing the weak magnetic field of light. Science 2009, 326, 529–530.

33

Rabouw, F. T.; Prins, P. T.; Norris, D. J. Europium-doped NaYF4 nanocrystals as probes for the electric and magnetic local density of optical states throughout the visible spectral range. Nano Lett. 2016, 16, 7254–7260.

34

Monticone, F.; Alù, A. The quest for optical magnetism: From split-ring resonators to plasmonic nanoparticles and nanoclusters. J. Mater. Chem. C 2014, 2, 9059–9072.

35

Burresi, M.; van Oosten, D.; Kampfrath, T.; Schoenmaker, H.; Heideman, R.; Leinse, A.; Kuipers, L. Probing the magnetic field of light at optical frequencies. Science 2009, 326, 550–553.

36

Verre, R.; Yang, Z. J.; Shegai, T.; Käll, M. Optical magnetism and plasmonic fano resonances in metal–insulator–metal oligomers. Nano Lett. 2015, 15, 1952–1958.

37

Shafiei, F.; Monticone, F.; Le, K. Q.; Liu, X. X.; Hartsfield, T.; Alù, A.; Li, X. Q. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat. Nanotech. 2013, 8, 95–99.

38

Darvishzadeh-Varcheie, M.; Kamandi, M.; Albooyeh, M.; Capolino, F. Optical magnetic field enhancement at nanoscale: A nanoantenna comparative study. Opt. Lett. 2019, 44, 4957–4960.

39

Nazir, A.; Panaro, S.; Zaccaria, R. P.; Liberale, C.; De Angelis, F.; Toma, A. Fano coil-type resonance for magnetic hot-spot generation. Nano Lett. 2014, 14, 3166–3171.

40

Chen, J.; Nie, H.; Zha, T. Q.; Mao, P.; Tang, C. J.; Shen, X. Y.; Park, G. S. Optical magnetic field enhancement by strong coupling in metamaterials. J. Lightwave Technol. 2018, 36, 2791–2795.

41

Baranov, D. G.; Savelev, R. S.; Li, S. V.; Krasnok, A. E.; Alù, A. Modifying magnetic dipole spontaneous emission with nanophotonic structures. Laser Photon. Rev. 2017, 11, 1600268.

42

Hein, S. M.; Geissen, H. Tailoring magnetic dipole emission with plasmonic split-ring resonators. Phys. Rev. Lett. 2013, 111, 026803.

43

Karaveli, S.; Zia, R. Spectral tuning by selective enhancement of electric and magnetic dipole emission. Phys. Rev. Lett. 2011, 106, 193004.

44

Choi, B.; Iwanaga, M.; Sugimoto, Y.; Sakoda, K.; Miyazaki, H. T. Selective plasmonic enhancement of electric- and magnetic-dipole radiations of Er ions. Nano Lett. 2016, 16, 5191–5196.

45

Hussain, R.; Kruk, S. S.; Bonner, C. E.; Noginov, M. A.; Staude, I.; Kivshar, Y. S.; Noginova, N.; Neshev, D. M. Enhancing Eu3+ magnetic dipole emission by resonant plasmonic nanostructures. Opt. Lett. 2015, 40, 1659–1662.

46

Waks, E.; Sridharan, D. Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter. Phys. Rev. A, 2010, 82, 043845.

47

Zhang, F.; Ren, J. J.; Shan, L. X.; Duan, X. K.; Li, Y.; Zhang, T. C.; Gong, Q. H.; Gu, Y. Chiral cavity quantum electrodynamics with coupled nanophotonic structures. Phys. Rev. A, 2019, 100, 053841.

48

Ren, J. J.; Gu, Y.; Zhao, D. X.; Zhang, F.; Zhang, T. C.; Gong, Q. H. Evanescent-vacuum-enhanced photon–exciton coupling and fluorescence collection. Phys. Rev. Lett. 2017, 118, 073604.

49

Lian, H.; Gu, Y.; Ren, J. J.; Zhang, F.; Wang, L. J.; Gong, Q. H. Efficient single photon emission and collection based on excitation of gap surface plasmons. Phys. Rev. Lett. 2015, 114, 193002.

50

Mivelle, M.; Grosjean, T.; Burr, G. W.; Fischer, U. C.; Garcia-Parajo, M. F. Strong modification of magnetic dipole emission through diabolo nanoantennas. ACS Photonics 2015, 2, 1071–1076.

51

Zhou, N.; Kinzel, E. C.; Xu, X. F. Complementary bowtie aperture for localizing and enhancing optical magnetic field. Opt. Lett. 2011, 36, 2764–2766.

52

Grahn, P.; Shevchenko, A.; Kaivola, M. Electromagnetic multipole theory for optical nanomaterials. New J. Phys. 2012, 14, 093033.

53

Sun, S.; Zhang, T. P.; Liu, Q.; Ma, L.; Du, Q. G.; Duan, H. G. Enhanced directional fluorescence emission of randomly oriented emitters via a metal–dielectric hybrid nanoantenna. J. Phys. Chem. C 2019, 123, 21150–21160.

54

Sun, S.; Li, R.; Li, M.; Du, Q. G.; Png, C. E.; Bai, P. Hybrid mushroom nanoantenna for fluorescence enhancement by matching the stokes shift of the emitter. J. Phys. Chem. C 2018, 122, 14771–14780.

55

Lee, C.; Lawrie, B.; Pooser, R.; Lee, K. G.; Rockstuhl, C.; Tame, M. Quantum plasmonic sensors. Chem. Rev. 2021, 121, 4743–4804.

56

Grosjean, T.; Mivelle, M.; Baida, F. I.; Burr, G. W.; Fischer, U. C. Diabolo nanoantenna for enhancing and confining the magnetic optical field. Nano Lett. 2011, 11, 1009–1013.

57

Blaber, M. G.; Arnold, M. D.; Ford, M. J. Search for the ideal plasmonic nanoshell: The effects of surface scattering and alternatives to gold and silver. J. Phys. Chem. C 2009, 113, 3041–4045.

58

Judd, B. R. Optical absorption intensities of rare-earth ions. Phys. Rev. 1962, 127, 750–761.

59

Galli, F.; Feyerherm, R.; Hendrikx, R. W. A.; Ramakrishnan, S.; Nieuwenhuys, G. J.; Mydosh, J. A. Magnetic structure of the Er3+ moments in the charge-density-wave compound Er5Ir4Si10. Phys. Rev. B 2000, 62, 13840–13843.

60

Vaskin, A.; Mashhadi, S.; Steinert, M.; Chong, K. E.; Keene, D.; Nanz, S.; Abass, A.; Rusak, E.; Choi, D. Y.; Fernandez-Corbaton, I. et al. Manipulation of magnetic dipole emission from Eu3+ with Mie-resonant dielectric metasurfaces. Nano Lett. 2019, 19, 1015–1022.

61

Shin, J. H.; Lee, W. H.; Han, H. S. 1.54 μm Er3+ photoluminescent properties of erbium-doped Si/SiO2 superlattices. Appl. Phys. Lett. 1999, 74, 1573.

62

Hong, J. Q.; Zhang, L. H.; Xu, M.; Huang, Y. Effect of erbium concentration on optical properties of Er: YLF laser crystals. Infrared Phys. Technol. 2017, 80, 38–43.

63

Rhyne, J.; McGuire, T. Magnetism of rare-earth elements, alloys, and compounds. IEEE Trans. Magn. 1972, 8, 105–130.

64

Kenyon, A. J. Recent developments in rare-earth doped materials for optoelectronics. Prog. Quant. Electron. 2002, 26, 225–284.

65
Magnetic Properties of Lanthanide and Actinides [Online]. https://www.radiochemistry.org/periodictable/la_series/L8.html (accessed Mar 30, 2022).
66

Verdú, J.; Zhoubi, H.; Koller, C.; Majer, J.; Ritsch, H.; Schmiedmayer, J. Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. Phys. Rev. Lett. 2009, 103, 043603.

67

Burresi, M.; Kampfrath, T.; van Oosten, D.; Prangsma, J. C.; Song, B. S.; Noda, S.; Kuipers, L. Magnetic light–matter interactions in a photonic crystal nanocavity. Phys. Rev. Lett. 2010, 105, 123901.

68

Theiss, J.; Aykol, M.; Pavaskar, P.; Cronin, S. B. Plasmonic mode mixing in nanoparticle dimers with nm-separations via substrate–mediated coupling. Nano Res. 2014, 7, 1344–1354.

69

Lei, R. S.; Deng, D. G.; Liu, X.; Huang, F. F.; Wang, H. P.; Zhao, S. L.; Xu, S. Q. Influence of excitation power and doping concentration on the upconversion emission and optical temperature sensing behavior of Er3+: BaGd2(MoO4)4 phosphors. Opt. Mater. Express 2018, 8, 3023–3035.

70

Yao, H. Y.; Shen, H. L.; Tang, Q. T.; Yang, N. N.; Zhai, Z. H.; Li, Y. F. Influence of Er3+ doping concentration and temperature on upconversion photoluminescence property of NaY(WO4)2 phosphor. Appl. Phys. A 2018, 124, 467.

71

Liu, M. H.; Shao, Y. X.; Piao, R. Q.; Zhang, D. L.; Wang, Y. Sellmeier dispersion and spectroscopic properties of Er3+-doped lutetium gallium garnet single crystal. Results Phys. 2021, 30, 104876.

72

Zhang, X. D.; Li, B.; Ma, H. P.; Zhang, L. M.; Zhao, H. F. Metal-organic frameworks modulated by doping Er3+ for up-conversion luminescence. ACS Appl. Mater. Interfaces 2016, 8, 17389–17394.

73

Li, M. X.; Gul, S.; Tian, D.; Zhou, E. L.; Wang, Y. B.; Han, Y. D.; Yin, L. S.; Huang, L. Erbium(III)-based metal-organic frameworks with tunable upconversion emissions. Dalton Trans. 2018, 47, 12868–12872.

74

Zhao, Q.; Yang, Z. J.; He, J. Coherent couplings between magnetic dipole transitions of quantum emitters and dielectric nanostructures. Photon. Res. 2019, 7, 1142–1153.

75
Toroidal dipole bound states in the continuum Phys. Rev. B 2018 98 161112(R) 10.1103/PhysRevB.98.161112

He, Y.; Guo, G. T.; Feng, T. H.; Xu, Y.; Miroshnichenko, A. E. Toroidal dipole bound states in the continuum. Phys. Rev. B 2018, 98, 161112(R).

76

Johansson, J. R.; Nation, P. D.; Nori, F. QuTiP 2: A python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 2013, 184, 1234–1240.

77

Kuhr, S.; Alt, W.; Schrader, D.; Dotsenko, I.; Miroshnychenko, Y.; Rauschenbeutel, A.; Meschede, D. Analysis of dephasing mechanisms in a standing-wave dipole trap. Phys. Rev. A 2005, 72, 023406.

78

Słowik, K.; Filter, R.; Straubel, J.; Lederer, F.; Rockstuhl, C. Strong coupling of optical nanoantennas and atomic systems. Phys. Rev. B 2013, 88, 195414.

Nano Research
Pages 7604-7613
Cite this article:
Sun S, Li D, Wang D, et al. Empowering magnetic strong coupling and its application for nonlinear refractive index sensing. Nano Research, 2022, 15(8): 7604-7613. https://doi.org/10.1007/s12274-022-4566-1
Topics:

916

Views

7

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 02 April 2022
Revised: 26 April 2022
Accepted: 21 May 2022
Published: 21 June 2022
© Tsinghua University Press 2022
Return