Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Ambient electroreduction of nitrogen (N2) is considered as a green and feasible approach for ammonia (NH3) synthesis, which urgently demands for efficient electrocatalyst. Morphology has close relationship with catalytic activity of heterogeneous catalysts. Nanoribbon is attractive nanostructure, which possesses the flexibility of one-dimensional nanomaterials, the large surface area of two-dimensional nanomaterials, and lateral size confinement effects. In this work, Cu3P nanoribbon is proposed as a highly efficient electrocatalyst for N2-to-NH3 conversion under benign conditions. When measured in N2-saturated 0.1 M HCl, such Cu3P nanoribbon achieves high performance with an excellent Faradaic efficiency as high as 37.8% and a large yield of 18.9 µg·h−1·mgcat.−1 at −0.2 V. It also demonstrates outstanding stability in long-term electrolysis test at least for 45 h.
Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.
Klerke, A.; Christensen, C. H.; Nørskov, J. K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304–2310.
Li, S. X.; Luo, Y. L.; Yue, L. C.; Li, T. S.; Wang, Y.; Liu, Q.; Cui, G. W.; Zhang, F.; Asiri, A. M.; Sun, X. P. An amorphous WC thin film enabled high-efficiency N2 reduction electrocatalysis under ambient conditions. Chem. Commun. 2021, 57, 7806–7809.
Chu, K.; Liu, Y. P.; Li, Y. B.; Zhang, H.; Tian, Y. Efficient electrocatalytic N2 reduction on CoO quantum dots. J. Mater. Chem. A 2019, 7, 4389–4394.
Xiong, W.; Cheng, X.; Wang, T.; Luo, Y. S.; Feng, J.; Lu, S. Y.; Asiri, A. M.; Li, W.; Jiang, Z. J.; Sun, X. P. Co3(hexahydroxytriphenylene)2: A conductive metal-organic framework for ambient electrocatalytic N2 reduction to NH3. Nano Res. 2020, 13, 1008–1012.
Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.
Yuan, L. P.; Wu, Z. Y.; Jiang, W. J.; Tang, T.; Niu, S.; Hu, J. S. Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia. Nano Res. 2020, 13, 1376–1382.
Liu, Q.; Xu, T.; Luo, Y. L.; Kong, Q. Q.; Li, T. S.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Sun, X. P. Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr. Opin. Electrochem. 2021, 29, 100766.
Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.
Chen, H. J.; Liang, J.; Dong, K.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Feng, Z. S.; Li, N.; Hamdy, M. S.; Alshehri, A. A. et al. Ambient electrochemical N2-to-NH3 conversion catalyzed by TiO2 decorated juncus effusus-derived carbon microtubes. Inorg. Chem. Front. 2022, 9, 1514–1519.
Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.
Chen, Q. Q.; Zhang, X. D.; Jin, Y. W.; Zhou, X. M.; Yang, Z.; Nie, H. G. An overview on noble metal (group VIII)-based heterogeneous electrocatalysts for nitrogen reduction reaction. Chem. Asian J. 2020, 15, 4131–4152.
Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.
Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.
Patil, S. B.; Wang, D. Y. Exploration and investigation of periodic elements for electrocatalytic nitrogen reduction. Small 2020, 16, 2002885.
Tang, C.; Zhang, R.; Lu, W. B.; Wang, Z.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 842–846.
Ji, L.; Li, L.; Ji, X. Q.; Zhang, Y.; Mou, S. Y.; Wu, T. W.; Liu, Q.; Li, B. H.; Zhu, X. J.; Luo, Y. L. et al. Highly selective electrochemical reduction of CO2 to alcohols on an FeP nanoarray. Angew. Chem., Int. Ed. 2020, 59, 758–762.
Zhang, S. B.; Gong, W. B.; Lv, Y.; Wang, H. J.; Han, M. M.; Wang, G. Z.; Shi, T. F.; Zhang, H. M. A pyrolysis–phosphorization approach to fabricate carbon nanotubes with embedded CoP nanoparticles for ambient electrosynthesis of ammonia. Chem. Commun. 2019, 55, 12376–12379.
Gao, J. J.; Lv, X.; Wang, F. Y.; Luo, Y. S.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Zhong, B. H.; Guo, X. D.; Sun, X. P. Enabling electrochemical conversion of N2 to NH3 under ambient conditions by a CoP3 nanoneedle array. J. Mater. Chem. A 2020, 8, 17956–17959.
Du, Z. B.; Liang, J.; Li, S. X.; Xu, Z. Q.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Liu, Y.; Kong, Q. Q. et al. Alkylthiol surface engineering: An effective strategy toward enhanced electrocatalytic N2-to-NH3 fixation by a CoP nanoarray. J. Mater. Chem. A 2021, 9, 13861–13866.
Meng, Q. G.; Hou, Y. P.; Yang, F. Q.; Cao, C. L.; Zou, Z.; Luo, J. H.; Zhou, W. Z.; Tong, Z. K.; Chen, S. X.; Zhou, S. D. et al. Modulation of surface properties on cobalt phosphide for high-performance ambient ammonia electrosynthesis. Appl. Catal. B: Environ. 2022, 303, 120874.
Yuan, M. L.; Zhang, H. H.; Gao, D. L.; He, H. Y.; Sun, Y.; Lu, P. L.; Dipazir, S.; Li, Q. G.; Zhou, L.; Li, S. W. et al. Support effect boosting the electrocatalytic N2 reduction activity of Ni2P/N, P-codoped carbon nanosheet hybrids. J. Mater. Chem. A 2020, 8, 2691–2700.
Zhu, X. J.; Wu, T. W.; Ji, L.; Liu, Q.; Luo, Y. L.; Cui, G. W.; Xiang, Y. M.; Zhang, Y. N.; Zheng, B. Z.; Sun, X. P. Unusual electrochemical N2 reduction activity in an earth-abundant iron catalyst via phosphorous modulation. Chem. Commun. 2020, 56, 731–734.
Luo, Y. X.; Qiu, W. B.; Liang, R. P.; Xia, X. H.; Qiu, J. D. Mo-doped FeP nanospheres for artificial nitrogen fixation. ACS Appl. Mater. Interfaces 2020, 12, 17452–17458.
Xu, T.; Liang, J.; Wang, Y. Y.; Li, S. X.; Du, Z. B.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Shi, X. F. et al. Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res. 2022, 15, 1039–1046.
Yang, X. H.; Ling, F. L.; Zi, X. R.; Wang, Y. W.; Zhang, H.; Zhang, H. J.; Zhou, M.; Guo, Z. P.; Wang, Y. Low-coordinate step atoms via plasma-assisted calcinations to enhance electrochemical reduction of nitrogen to ammonia. Small 2020, 16, 2000421.
Zhao, R. B.; Geng, Q.; Chang, L.; Wei, P. P.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Lu, S. Y.; Wang, Z. M.; Sun, X. P. Cu3P nanoparticle-reduced graphene oxide hybrid: An efficient electrocatalyst to realize N2-to-NH3 conversion under ambient conditions. Chem. Commun. 2020, 56, 9328–9331.
Yang, H. L.; Wu, Y.; Zhuang, Z. W.; Li, Y.; Chen, C. Factors affecting the catalytic performance of nano-catalysts. Chin. J. Chem. 2022, 40, 515–523.
Huang, C.; Zhang, S. S.; Quan, Y. M.; Ren, K. X.; Tian, Y. L.; Zhu, S. Q.; Liu, R. Morphology and size controlled synthesis of metal-organic framework crystals for catalytic oxidation of toluene. Solid State Sci. 2022, 123, 106798.
Ma, S. J.; Wang, X. W.; Chen, T.; Yuan, Z. H. Effect of surface morphology on catalytic activity for NO oxidation of SmMn2O5 nanocrystals. Chem. Eng. J. 2018, 354, 191–196.
Watts, M. C.; Picco, L.; Russell-Pavier, F. S.; Cullen, P. L.; Miller, T. S.; Bartus, S. P.; Payton, O. D.; Skipper, N. T.; Tileli, V.; Howard, C. A. Production of phosphorene nanoribbons. Nature 2019, 568, 216–220.
Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 2008, 130, 16739–16744.
Guo, H. Y.; Lu, N.; Dai, J.; Wu, X. J.; Zeng, X. C. Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 2014, 118, 14051–14059.
Johnson, A. P.; Sabu, C.; Swamy, N. K.; Anto, A.; Gangadharappa, H. V.; Pramod, K. Graphene nanoribbon: An emerging and efficient flat molecular platform for advanced biosensing. Biosens. Bioelectron. 2021, 184, 113245.
Kotekar-Patil, D.; Deng, J.; Wong, S. L.; Lau, C. S.; Goh, K. E. J. Single layer MoS2 nanoribbon field effect transistor. Appl. Phys. Lett. 2019, 114, 013508.
Shaban, M.; Ashraf, A. M.; Abukhadra, M. R. TiO2 nanoribbons/carbon nanotubes composite with enhanced photocatalytic activity; fabrication, characterization, and application. Sci. Rep. 2018, 8, 781.
Liu, Q.; Zhang, X.; Wang, J. H.; Zhang, Y. L.; Bian, S.; Cheng, Z. Q.; Kang, N.; Huang, H.; Gu, S.; Wang, Y. et al. Crystalline red phosphorus nanoribbons: Large-scale synthesis and electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2020, 59, 14383–14387.
Liu, Y. X.; Wu, L.; Liu, Q.; Liu, L.; Ke, S. W.; Peng, Z. H.; Shi, T. Y.; Yuan, X. R.; Huang, H.; Li, J. et al. Topochemical synthesis of copper phosphide nanoribbons for flexible optoelectronic memristors. Adv. Funct. Mater. 2022, 32, 2110900.
Bai, Y.; Liu, C. L.; Chen, T. T.; Li, W. T.; Zheng, S. S.; Pi, Y. C.; Luo, Y. S.; Pang, H. MXene-copper/cobalt hybrids via lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew. Chem., Int. Ed. 2021, 60, 25318–25322.
Liang, J.; Deng, B.; Liu, Q.; Wen, G. L.; Liu, Q.; Li, T. S.; Luo, Y. L.; Alshehri, A. A.; Alzahrani, K. A.; Ma, D. W. et al. High-efficiency electrochemical nitrite reduction to ammonium using a Cu3P nanowire array under ambient conditions. Green Chem. 2021, 23, 5487–5493.
Li, Q.; Li, X. R.; Gu, J. W.; Li, Y. L.; Tian, Z. Q.; Pang, H. Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Res. 2021, 14, 1405–1412.
Liu, C. L.; Bai, Y.; Li, W. T.; Yang, F. Y.; Zhang, G. X.; Pang, H. In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angew. Chem., Int. Ed. 2022, 61, e202116282.
Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.
Zhao, D. L.; Liang, J.; Li, J.; Zhang, L. C.; Dong, K.; Yue, L. C.; Luo, Y. S.; Ren, Y. C.; Liu, Q.; Hamdy, M. S. et al. A TiO2−x nanobelt array with oxygen vacancies: An efficient electrocatalyst toward nitrite conversion to ammonia. Chem. Commun. 2022, 58, 3669–3672.
Fan, X. Y.; Xie, L. S.; Liang, J.; Ren, Y. C.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Li, N.; Tang, B. et al.
Liu, Q.; Xie, L. S.; Liang, J.; Ren, Y. C.; Wang, Y. Y.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Li, N. et al. Ambient ammonia synthesis via electrochemical reduction of nitrate enabled by NiCo2O4 nanowire array. Small 2022, 18, 2106961.
Jia, R. R.; Wang, Y. T.; Wang, C. H.; Ling, Y. F.; Yu, Y. F.; Zhang, B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533–3540.
Shi, J. W.; Wang, C. H.; Yang, R.; Chen, F. P.; Meng, N. N.; Yu, Y. F.; Zhang, B. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. Sci. China Chem. 2021, 64, 1493–1497.
Li, Z. R.; Ma, Z. Y.; Liang, J.; Ren, Y. C.; Li, T. S.; Xu, S. R.; Liu, Q.; Li, N.; Tang, B.; Liu, Y. et al. MnO2 nanoarray with oxygen vacancies: An efficient catalyst for NO electroreduction to NH3 at ambient conditions. Mater. Today Phys. 2022, 22, 100586.
Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Ed. 2020, 59, 9711–9718.
Lin, Y. T.; Liang, J.; Li, H. B.; Zhang, L. C.; Mou, T.; Li, T. S.; Yue, L. C.; Ji, Y. Y.; Liu, Q.; Luo, Y. L. et al. Bi nanodendrites for highly efficient electrocatalytic NO reduction to NH3 at ambient conditions. Mater. Today Phys. 2022, 22, 100611.