AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced N2-to-NH3 conversion efficiency on Cu3P nanoribbon electrocatalyst

Qian Liu1Yiting Lin2Shuang Gu3Ziqiang Cheng3Lisi Xie1Shengjun Sun2Longcheng Zhang2Yongsong Luo2Abdulmohsen Ali Alshehri4Mohamed S. Hamdy5Qingquan Kong1Jiahong Wang3( )Xuping Sun2 ( )
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
Show Author Information

Graphical Abstract

Cu3P nanoribbon is an effective and stable nitrogen reduction electrocatalyst, achieving high-efficiency for ammonia synthesis with an excellent Faraday efficiency up to 37.8% and a high ammonia yield of 18.9 µg·h−1·mgcat.−1.

Abstract

Ambient electroreduction of nitrogen (N2) is considered as a green and feasible approach for ammonia (NH3) synthesis, which urgently demands for efficient electrocatalyst. Morphology has close relationship with catalytic activity of heterogeneous catalysts. Nanoribbon is attractive nanostructure, which possesses the flexibility of one-dimensional nanomaterials, the large surface area of two-dimensional nanomaterials, and lateral size confinement effects. In this work, Cu3P nanoribbon is proposed as a highly efficient electrocatalyst for N2-to-NH3 conversion under benign conditions. When measured in N2-saturated 0.1 M HCl, such Cu3P nanoribbon achieves high performance with an excellent Faradaic efficiency as high as 37.8% and a large yield of 18.9 µg·h−1·mgcat.−1 at −0.2 V. It also demonstrates outstanding stability in long-term electrolysis test at least for 45 h.

Electronic Supplementary Material

Download File(s)
12274_2022_4568_MOESM1_ESM.pdf (1.1 MB)

References

1

Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

2

Klerke, A.; Christensen, C. H.; Nørskov, J. K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304–2310.

3
Nielsen, A. Ammonia: Catalysis and Manufacture; Springer: Berlin Heidelberg, 1995; pp 199–308.
4

Li, S. X.; Luo, Y. L.; Yue, L. C.; Li, T. S.; Wang, Y.; Liu, Q.; Cui, G. W.; Zhang, F.; Asiri, A. M.; Sun, X. P. An amorphous WC thin film enabled high-efficiency N2 reduction electrocatalysis under ambient conditions. Chem. Commun. 2021, 57, 7806–7809.

5

Chu, K.; Liu, Y. P.; Li, Y. B.; Zhang, H.; Tian, Y. Efficient electrocatalytic N2 reduction on CoO quantum dots. J. Mater. Chem. A 2019, 7, 4389–4394.

6

Xiong, W.; Cheng, X.; Wang, T.; Luo, Y. S.; Feng, J.; Lu, S. Y.; Asiri, A. M.; Li, W.; Jiang, Z. J.; Sun, X. P. Co3(hexahydroxytriphenylene)2: A conductive metal-organic framework for ambient electrocatalytic N2 reduction to NH3. Nano Res. 2020, 13, 1008–1012.

7

Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

8

Yuan, L. P.; Wu, Z. Y.; Jiang, W. J.; Tang, T.; Niu, S.; Hu, J. S. Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia. Nano Res. 2020, 13, 1376–1382.

9

Liu, Q.; Xu, T.; Luo, Y. L.; Kong, Q. Q.; Li, T. S.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Sun, X. P. Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr. Opin. Electrochem. 2021, 29, 100766.

10

Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

11

Chen, H. J.; Liang, J.; Dong, K.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Feng, Z. S.; Li, N.; Hamdy, M. S.; Alshehri, A. A. et al. Ambient electrochemical N2-to-NH3 conversion catalyzed by TiO2 decorated juncus effusus-derived carbon microtubes. Inorg. Chem. Front. 2022, 9, 1514–1519.

12

Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

13

Chen, Q. Q.; Zhang, X. D.; Jin, Y. W.; Zhou, X. M.; Yang, Z.; Nie, H. G. An overview on noble metal (group VIII)-based heterogeneous electrocatalysts for nitrogen reduction reaction. Chem. Asian J. 2020, 15, 4131–4152.

14

Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.

15

Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

16

Patil, S. B.; Wang, D. Y. Exploration and investigation of periodic elements for electrocatalytic nitrogen reduction. Small 2020, 16, 2002885.

17

Tang, C.; Zhang, R.; Lu, W. B.; Wang, Z.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 842–846.

18

Ji, L.; Li, L.; Ji, X. Q.; Zhang, Y.; Mou, S. Y.; Wu, T. W.; Liu, Q.; Li, B. H.; Zhu, X. J.; Luo, Y. L. et al. Highly selective electrochemical reduction of CO2 to alcohols on an FeP nanoarray. Angew. Chem., Int. Ed. 2020, 59, 758–762.

19

Zhang, S. B.; Gong, W. B.; Lv, Y.; Wang, H. J.; Han, M. M.; Wang, G. Z.; Shi, T. F.; Zhang, H. M. A pyrolysis–phosphorization approach to fabricate carbon nanotubes with embedded CoP nanoparticles for ambient electrosynthesis of ammonia. Chem. Commun. 2019, 55, 12376–12379.

20

Gao, J. J.; Lv, X.; Wang, F. Y.; Luo, Y. S.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Zhong, B. H.; Guo, X. D.; Sun, X. P. Enabling electrochemical conversion of N2 to NH3 under ambient conditions by a CoP3 nanoneedle array. J. Mater. Chem. A 2020, 8, 17956–17959.

21

Du, Z. B.; Liang, J.; Li, S. X.; Xu, Z. Q.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Liu, Y.; Kong, Q. Q. et al. Alkylthiol surface engineering: An effective strategy toward enhanced electrocatalytic N2-to-NH3 fixation by a CoP nanoarray. J. Mater. Chem. A 2021, 9, 13861–13866.

22

Meng, Q. G.; Hou, Y. P.; Yang, F. Q.; Cao, C. L.; Zou, Z.; Luo, J. H.; Zhou, W. Z.; Tong, Z. K.; Chen, S. X.; Zhou, S. D. et al. Modulation of surface properties on cobalt phosphide for high-performance ambient ammonia electrosynthesis. Appl. Catal. B: Environ. 2022, 303, 120874.

23

Yuan, M. L.; Zhang, H. H.; Gao, D. L.; He, H. Y.; Sun, Y.; Lu, P. L.; Dipazir, S.; Li, Q. G.; Zhou, L.; Li, S. W. et al. Support effect boosting the electrocatalytic N2 reduction activity of Ni2P/N, P-codoped carbon nanosheet hybrids. J. Mater. Chem. A 2020, 8, 2691–2700.

24

Zhu, X. J.; Wu, T. W.; Ji, L.; Liu, Q.; Luo, Y. L.; Cui, G. W.; Xiang, Y. M.; Zhang, Y. N.; Zheng, B. Z.; Sun, X. P. Unusual electrochemical N2 reduction activity in an earth-abundant iron catalyst via phosphorous modulation. Chem. Commun. 2020, 56, 731–734.

25

Luo, Y. X.; Qiu, W. B.; Liang, R. P.; Xia, X. H.; Qiu, J. D. Mo-doped FeP nanospheres for artificial nitrogen fixation. ACS Appl. Mater. Interfaces 2020, 12, 17452–17458.

26

Xu, T.; Liang, J.; Wang, Y. Y.; Li, S. X.; Du, Z. B.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Shi, X. F. et al. Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res. 2022, 15, 1039–1046.

27

Yang, X. H.; Ling, F. L.; Zi, X. R.; Wang, Y. W.; Zhang, H.; Zhang, H. J.; Zhou, M.; Guo, Z. P.; Wang, Y. Low-coordinate step atoms via plasma-assisted calcinations to enhance electrochemical reduction of nitrogen to ammonia. Small 2020, 16, 2000421.

28

Zhao, R. B.; Geng, Q.; Chang, L.; Wei, P. P.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Lu, S. Y.; Wang, Z. M.; Sun, X. P. Cu3P nanoparticle-reduced graphene oxide hybrid: An efficient electrocatalyst to realize N2-to-NH3 conversion under ambient conditions. Chem. Commun. 2020, 56, 9328–9331.

29

Yang, H. L.; Wu, Y.; Zhuang, Z. W.; Li, Y.; Chen, C. Factors affecting the catalytic performance of nano-catalysts. Chin. J. Chem. 2022, 40, 515–523.

30

Huang, C.; Zhang, S. S.; Quan, Y. M.; Ren, K. X.; Tian, Y. L.; Zhu, S. Q.; Liu, R. Morphology and size controlled synthesis of metal-organic framework crystals for catalytic oxidation of toluene. Solid State Sci. 2022, 123, 106798.

31

Ma, S. J.; Wang, X. W.; Chen, T.; Yuan, Z. H. Effect of surface morphology on catalytic activity for NO oxidation of SmMn2O5 nanocrystals. Chem. Eng. J. 2018, 354, 191–196.

32

Watts, M. C.; Picco, L.; Russell-Pavier, F. S.; Cullen, P. L.; Miller, T. S.; Bartus, S. P.; Payton, O. D.; Skipper, N. T.; Tileli, V.; Howard, C. A. Production of phosphorene nanoribbons. Nature 2019, 568, 216–220.

33

Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 2008, 130, 16739–16744.

34

Guo, H. Y.; Lu, N.; Dai, J.; Wu, X. J.; Zeng, X. C. Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 2014, 118, 14051–14059.

35

Johnson, A. P.; Sabu, C.; Swamy, N. K.; Anto, A.; Gangadharappa, H. V.; Pramod, K. Graphene nanoribbon: An emerging and efficient flat molecular platform for advanced biosensing. Biosens. Bioelectron. 2021, 184, 113245.

36

Kotekar-Patil, D.; Deng, J.; Wong, S. L.; Lau, C. S.; Goh, K. E. J. Single layer MoS2 nanoribbon field effect transistor. Appl. Phys. Lett. 2019, 114, 013508.

37

Shaban, M.; Ashraf, A. M.; Abukhadra, M. R. TiO2 nanoribbons/carbon nanotubes composite with enhanced photocatalytic activity; fabrication, characterization, and application. Sci. Rep. 2018, 8, 781.

38

Liu, Q.; Zhang, X.; Wang, J. H.; Zhang, Y. L.; Bian, S.; Cheng, Z. Q.; Kang, N.; Huang, H.; Gu, S.; Wang, Y. et al. Crystalline red phosphorus nanoribbons: Large-scale synthesis and electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2020, 59, 14383–14387.

39

Liu, Y. X.; Wu, L.; Liu, Q.; Liu, L.; Ke, S. W.; Peng, Z. H.; Shi, T. Y.; Yuan, X. R.; Huang, H.; Li, J. et al. Topochemical synthesis of copper phosphide nanoribbons for flexible optoelectronic memristors. Adv. Funct. Mater. 2022, 32, 2110900.

40

Bai, Y.; Liu, C. L.; Chen, T. T.; Li, W. T.; Zheng, S. S.; Pi, Y. C.; Luo, Y. S.; Pang, H. MXene-copper/cobalt hybrids via lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew. Chem., Int. Ed. 2021, 60, 25318–25322.

41

Liang, J.; Deng, B.; Liu, Q.; Wen, G. L.; Liu, Q.; Li, T. S.; Luo, Y. L.; Alshehri, A. A.; Alzahrani, K. A.; Ma, D. W. et al. High-efficiency electrochemical nitrite reduction to ammonium using a Cu3P nanowire array under ambient conditions. Green Chem. 2021, 23, 5487–5493.

42

Li, Q.; Li, X. R.; Gu, J. W.; Li, Y. L.; Tian, Z. Q.; Pang, H. Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Res. 2021, 14, 1405–1412.

43

Liu, C. L.; Bai, Y.; Li, W. T.; Yang, F. Y.; Zhang, G. X.; Pang, H. In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angew. Chem., Int. Ed. 2022, 61, e202116282.

44

Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

45

Zhao, D. L.; Liang, J.; Li, J.; Zhang, L. C.; Dong, K.; Yue, L. C.; Luo, Y. S.; Ren, Y. C.; Liu, Q.; Hamdy, M. S. et al. A TiO2−x nanobelt array with oxygen vacancies: An efficient electrocatalyst toward nitrite conversion to ammonia. Chem. Commun. 2022, 58, 3669–3672.

46
Fan X. Y. Xie L. S. Liang J. Ren Y. C. Zhang L. C. Yue L. C. Li T. S. Luo Y. L. Li N. Tang B. et al In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia Nano Res. 2022 15 3050 3055 10.1007/s12274-021-3951-5

Fan, X. Y.; Xie, L. S.; Liang, J.; Ren, Y. C.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Li, N.; Tang, B. et al. In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Res. 2022, 15, 3050–3055.

47

Liu, Q.; Xie, L. S.; Liang, J.; Ren, Y. C.; Wang, Y. Y.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Li, N. et al. Ambient ammonia synthesis via electrochemical reduction of nitrate enabled by NiCo2O4 nanowire array. Small 2022, 18, 2106961.

48

Jia, R. R.; Wang, Y. T.; Wang, C. H.; Ling, Y. F.; Yu, Y. F.; Zhang, B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533–3540.

49

Shi, J. W.; Wang, C. H.; Yang, R.; Chen, F. P.; Meng, N. N.; Yu, Y. F.; Zhang, B. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. Sci. China Chem. 2021, 64, 1493–1497.

50

Li, Z. R.; Ma, Z. Y.; Liang, J.; Ren, Y. C.; Li, T. S.; Xu, S. R.; Liu, Q.; Li, N.; Tang, B.; Liu, Y. et al. MnO2 nanoarray with oxygen vacancies: An efficient catalyst for NO electroreduction to NH3 at ambient conditions. Mater. Today Phys. 2022, 22, 100586.

51

Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Ed. 2020, 59, 9711–9718.

52

Lin, Y. T.; Liang, J.; Li, H. B.; Zhang, L. C.; Mou, T.; Li, T. S.; Yue, L. C.; Ji, Y. Y.; Liu, Q.; Luo, Y. L. et al. Bi nanodendrites for highly efficient electrocatalytic NO reduction to NH3 at ambient conditions. Mater. Today Phys. 2022, 22, 100611.

Nano Research
Pages 7134-7138
Cite this article:
Liu Q, Lin Y, Gu S, et al. Enhanced N2-to-NH3 conversion efficiency on Cu3P nanoribbon electrocatalyst. Nano Research, 2022, 15(8): 7134-7138. https://doi.org/10.1007/s12274-022-4568-z
Topics:

1104

Views

87

Crossref

88

Web of Science

86

Scopus

5

CSCD

Altmetrics

Received: 06 April 2022
Revised: 04 May 2022
Accepted: 21 May 2022
Published: 18 June 2022
© Tsinghua University Press 2022
Return