AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Large-scale synthesis of fluorine-free carbonyl iron-organic silicon hydrophobic absorbers with long term corrosion protection property

Wei Tian1Jinyao Li2,3Yifan Liu3Longjiang Deng1( )Yang Guo4( )Xian Jian1,2,3( )
National Engineering Researching Centre of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-Spectral Absorbing Materials and Structures of Ministry of Education, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
The Yangtze Delta Region Institute (Huzhou) & School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Huzhou 313001, China
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
School of Electrical and Information Engineering, Panzhihua University, Panzhihua 617000, China
Show Author Information

Graphical Abstract

Carbonyl iron (CI)@SiO2/1,1,1,3,3,3-hexamethyl disilazane (HMDS) hybrid exhibits excellent microwave absorption and long-term corrosion protection properties, largely due to the extraordinary wave-transparent and shielding ability of hydrophobic protective layer.

Abstract

Environmentally-friendly magnetic metallic absorbers with high-performing antioxidant property, thermal stability, and anti-corrosion capability have attracted great attention in real-world applications. A surface modification technology of magnetic metallic absorbers with dense and inert materials has been an effective strategy to solve the aforesaid problem. Herein, fluorine-free core–shell carbonyl iron-organic silicon absorbers (CI@SiO2/1,1,1,3,3,3-hexamethyl disilazane (HMDS)) were fabricated via a facile one-pot synthesis using tetraethyl orthosilicate (TEOS) and HMDS as the precursor of protective layer (SiO2/HMDS), and CI@SiO2/HMDS hybrid reveals its long-term corrosion resistance and excellent microwave absorption performance with a minimum reflection loss value of −44.3 dB and an effective absorption bandwidth of 5.3 GHz at a thin thickness of 2.0 mm after immersion in 5.0 wt.% NaCl acidic solutions for 2,160 h. Meanwhile, CI@SiO2/HMDS hybrid can still achieve the maximum radar cross-sectional (RCS) reduction values about 16.5 dB·m2 at the detection θ of 0°. The exceptional microwave absorption performance and structural stability are largely due to the extraordinary wave-transparent property and shielding ability against corrosive medium of SiO2/HMDS hydrophobic protective layer with a contact angle of 132.5°. The research paves the way for the large-scale and batch production of high-performance magnetic metallic absorbers and increases their survivability and reliability in the harsh environments.

Electronic Supplementary Material

Download File(s)
12274_2022_4569_MOESM1_ESM.pdf (2.3 MB)

References

1

Qian, X.; Zhang, Y. H.; Wu, Z. C.; Zhang, R. X.; Li, X. H.; Wang, M.; Che, R. C. Multi-path electron transfer in 1D double-shelled Sn@Mo2C/C tubes with enhanced dielectric loss for boosting microwave absorption performance. Small 2021, 17, 2100283.

2

Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

3

Wang, H. Y.; Sun, X. B.; Wang, G. S. A MXene-modulated 3D crosslinking network of hierarchical flower-like MOF derivatives towards ultra-efficient microwave absorption properties. J. Mater. Chem. A 2021, 9, 24571–24581.

4

Shu, J. C.; Cao, M. S.; Zhang, M.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Cao, M. Q. Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 2020, 30, 1908299.

5

Liang, X. H.; Man, Z. M.; Quan, B.; Zheng, J.; Gu, W. H.; Zhang, Z.; Ji, G. B. Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 2020, 12, 102.

6

Liu, T. T.; Cao, M. Q.; Fang, Y. S.; Zhu, Y. H.; Cao, M. S. Green building materials lit up by electromagnetic absorption function: A review. J. Mater. Sci. Technol. 2022, 112, 329–344.

7

Zhang, M.; Cao, M. S.; Shu, J. C.; Cao, W. Q.; Li, L.; Yuan, J. Electromagnetic absorber converting radiation for multifunction. Mater. Sci. Eng. R:Rep. 2021, 145, 100627.

8

Tian, W.; Zhang, X. Z.; Guo, Y.; Mu, C. H.; Zhou, P. H.; Yin, L. J.; Zhang, L. B.; Zhang, L.; Lu, H. P.; Jian, X. et al. Hybrid silica-carbon bilayers anchoring on FeSiAl surface with bifunctions of enhanced anti-corrosion and microwave absorption. Carbon 2021, 173, 185–193.

9

Ma, W. J.; He, P.; Wang, T. Y.; Xu, J.; Liu, X. Y.; Zhuang, Q. X.; Cui, Z. K.; Lin, S. L. Microwave absorption of carbonization temperature-dependent uniform yolk–shell H-Fe3O4@C microspheres. Chem. Eng. J. 2021, 420, 129875.

10

Quan, B.; Gu, W. H.; Sheng, J. Q.; Lv, X. F.; Mao, Y. Y.; Liu, L.; Huang, X. G.; Tian, Z. J.; Ji, G. B. From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 2021, 14, 1495–1501.

11

Zeng, Z. H.; Wu, T. T.; Han, D. X.; Ren, Q.; Siqueira, G.; Nyström, G. Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 2020, 14, 2927–2938.

12

Gao, Z. G.; Ma, Z. H.; Lan, D.; Zhao, Z. H.; Zhang, L. M.; Wu, H. J.; Hou, Y. L. Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 2022, 32, 2112294.

13

Liu, J. L.; Zhang, L. M.; Wu, H. J. Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 2022, 32, 2200544.

14

Li, X. P.; Deng, Z. M.; Li, Y.; Zhang, H. B.; Zhao, S.; Zhang, Y.; Wu, X. Y.; Yu, Z. Z. Controllable synthesis of hollow microspheres with Fe@carbon dual-shells for broad bandwidth microwave absorption. Carbon 2019, 147, 172–181.

15

Guo, D.; Yuan, H. R.; Wang, X. C.; Zhu, C. L.; Chen, Y. J. Urchin-like amorphous nitrogen-doped carbon nanotubes encapsulated with transition-metal-alloy@graphene core@shell nanoparticles for microwave energy attenuation. ACS Appl. Mater. Interfaces 2020, 12, 9628–9636.

16

Sun, Y.; Zhou, B.; Wang, H. P.; Deng, X.; Feng, J.; He, M.; Li, X. H.; Zhu, X. H.; Peng, Y.; Zheng, X. L. Boosting dual-interfacial polarization by decorating hydrophobic graphene with high-crystalline core–shell FeCo@Fe3O4 nanoparticle for improved microwave absorption. Carbon 2022, 186, 333–343.

17

Qin, M.; Zhang, L. M.; Zhao, X. R.; Wu, H. J. Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Adv. Sci. 2021, 8, 2004640.

18

Wang, B. L.; Fu, Y. G.; Li, J.; Liu, T. Yolk–shelled Co@SiO2@mesoporous carbon microspheres: Construction of multiple heterogeneous interfaces for wide-bandwidth microwave absorption. J. Colloid Interface Sci. 2022, 607, 1540–1550.

19

Zhao, B.; Li, Y.; Ji, H. Y.; Bai, P. W.; Wang, S.; Fan, B. B.; Guo, X. Q.; Zhang, R. Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon 2021, 176, 411–420.

20

Jeon, S.; Kim, J.; Kim, K. H. Microwave absorption properties of graphene oxide capsulated carbonyl iron particles. Appl. Surf. Sci. 2019, 475, 1065–1069.

21

Wang, W.; Guo, J. X.; Long, C.; Li, W.; Guan, J. G. Flaky carbonyl iron particles with both small grain size and low internal strain for broadband microwave absorption. J. Alloys Compd. 2015, 637, 106–111.

22

Wang, A. M.; Wang, W.; Long, C.; Li, W.; Guan, J. G.; Gu, H. S.; Xu, G. X. Facile preparation, formation mechanism and microwave absorption properties of porous carbonyl iron flakes. J. Mater. Chem. C 2014, 2, 3769–3776.

23

Zhang, K. L.; Chen, J.; Yue, S. J.; Zhang, H. Y.; Meng, C.; Wang, J. G. Facile synthesis of core–shell CI/SiO2 decorated RGO sheets composite for excellent electromagnetic wave absorption performance covering the whole X-band. Compos. Part A: Appl. Sci. Manuf. 2020, 130, 105755.

24

Maeda, T.; Sugimoto, S.; Kagotani, T.; Tezuka, N.; Inomata, K. Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth-iron-boron compounds. J. Magn. Magn. Mater. 2004, 281, 195–205.

25

Tian, W.; Li, J. Y.; Liu, Y. F.; Ali, R.; Guo, Y.; Deng, L. J.; Mahmood, N.; Jian, X. Atomic-scale layer-by-layer deposition of FeSiAl@ZnO@Al2O3 hybrid with threshold anti-corrosion and ultra-high microwave absorption properties in low-frequency bands. Nano-Micro Lett. 2021, 13, 161.

26

Li, S. Z.; Ma, L.; Lei, Z. X.; Hua, A.; Zhang, A. Q.; Song, Y. H.; Liu, F. C.; Geng, D. Y.; Liu, W.; Ma, S. et al. Bifunctional two-dimensional nanocomposite for electromagnetic wave absorption and comprehensive anti-corrosion. Carbon 2022, 186, 520–529.

27

Jiang, X. Y.; Wan, W. H.; Wang, B.; Zhang, L. B.; Yin, L. J.; Van Bui, H.; Xie, J. L.; Zhang, L.; Lu, H. P.; Deng, L. J. Enhanced anti-corrosion and microwave absorption performance with carbonyl iron modified by organic fluorinated chemicals. Appl. Surf. Sci. 2022, 572, 151320.

28

Yadav, A.; Kumar, R.; Choudhary, H. K.; Sahoo, B. Graphene-oxide coating for corrosion protection of iron particles in saline water. Carbon 2018, 140, 477–487.

29

Du, Y. C.; Liu, W. W.; Qiang, R.; Wang, Y.; Han, X. J.; Ma, J.; Xu, P. Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014, 6, 12997–13006.

30

Cui, M. J.; Ren, S. M.; Zhao, H. C.; Xue, Q. J.; Wang, L. P. Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating. Chem. Eng. J. 2018, 335, 255–266.

31

Chang, M. Q.; Song, Y. H.; Chen, J.; Cui, L.; Shi, Z.; Sheng, Y.; Zou, H. F. Photocatalytic and photoluminescence properties of core–shell SiO2@TiO2: Eu3+, Sm3+ and its etching products. ACS Sustainable Chem. Eng. 2018, 6, 223–236.

32

Yin, H. Y.; Zhu, J. J.; Chen, J. J.; Gong, J. Y.; Nie, Q. L. MOF-derived in situ growth of carbon nanotubes entangled Ni/NiO porous polyhedrons for high performance glucose sensor. Mater. Lett. 2018, 221, 267–270.

33

Zhu, R. F.; Liu, M. M.; Hou, Y. Y.; Zhang, L. P.; Li, M.; Wang, D.; Fu, S. H. One-pot preparation of fluorine-free magnetic superhydrophobic particles for controllable liquid marbles and robust multifunctional coatings. ACS Appl. Mater. Interfaces 2020, 12, 17004–17017.

34

Mungse, H. P.; Gupta, K.; Singh, R.; Sharma, O. P.; Sugimura, H.; Khatri, O. P. Alkylated graphene oxide and reduced graphene oxide: Grafting density, dispersion stability to enhancement of lubrication properties. J. Colloid Interface Sci. 2019, 541, 150–162.

35

Bao, X. K.; Wang, X. L.; Zhou, X. A.; Shi, G. M.; Xu, G.; Yu, J.; Guan, Y. Y.; Zhang, Y. J.; Li, D.; Choi, C. Excellent microwave absorption of FeCo/ZnO composites with defects in ZnO for regulating the impedance matching. J. Alloys Compd. 2018, 769, 512–520.

36

Wang, B. L.; Wu, Q.; Fu, Y. G.; Liu, T. A review on carbon/magnetic metal composites for microwave absorption. J. Mater. Sci. Technol. 2021, 86, 91–109.

37

Sun, X. X.; Wang, Z.; Wang, S. S.; Ning, Y. H.; Yang, M. L.; Yang, S.; Zhou, L.; He, Q.; Li, Y. B. Ultrabroad-band and low-frequency microwave absorption based on activated waxberry metamaterial. Chem. Eng. J. 2021, 422, 130142.

38

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

39

Wang, X. X.; Zhang, M.; Shu, J. C.; Wen, B.; Cao, W. Q.; Cao, M. S. Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response. Carbon 2021, 184, 136–145.

40

Pan, Y. F.; Wang, G. S.; Liu, L.; Guo, L.; Yu, S. H. Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 2017, 10, 284–294.

41

Guo, J.; Li, X.; Chen, Z. R.; Zhu, J. F.; Mai, X. M.; Wei, R. B.; Sun, K.; Liu, H.; Chen, Y. X.; Naik, N. et al. Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 108, 64–72.

42

Gao, S. T.; Zhang, Y. C.; Xing, H. L.; Li, H. X. Controlled reduction synthesis of yolk–shell magnetic@void@C for electromagnetic wave absorption. Chem. Eng. J. 2020, 387, 124149.

43

Zhang, Z. W.; Cai, Z. H.; Wang, Z. Y.; Peng, Y. L.; Xia, L.; Ma, S. P.; Yin, Z. Z.; Huang, Y. A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 2021, 13, 56.

44

Wang, L.; Li, X.; Shi, X. F.; Huang, M. Q.; Li, X. H.; Zeng, Q. W.; Che, R. C. Recent progress of microwave absorption microspheres by magnetic-dielectric synergy. Nanoscale 2021, 13, 2136–2156.

45

Wang, Y. H.; Han, X. J.; Xu, P.; Liu, D. W.; Cui, L. R.; Zhao, H. H.; Du, Y. C. Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption. Chem. Eng. J. 2019, 372, 312–320.

46

Daubert, J. S.; Hill, G. T.; Gotsch, H. N.; Gremaud, A. P.; Ovental, J. S.; Williams, P. S.; Oldham, C. J.; Parsons, G. N. Corrosion protection of copper using Al2O3, TiO2, ZnO, HfO2, and ZrO2 atomic layer deposition. ACS Appl. Mater. Interfaces 2017, 9, 4192–4201.

47

Mirhashemihaghighi, S.; Światowska, J.; Maurice, V.; Seyeux, A.; Zanna, S.; Salmi, E.; Ritala, M.; Marcus, P. Corrosion protection of aluminium by ultra-thin atomic layer deposited alumina coatings. Corros. Sci. 2016, 106, 16–24.

48

Cao, X. K.; Huang, F.; Huang, C.; Liu, J.; Cheng, Y. F. Preparation of graphene nanoplate added zinc-rich epoxy coatings for enhanced sacrificial anode-based corrosion protection. Corros. Sci. 2019, 159, 108120.

49

Ramezanzadeh, B.; Haeri, Z.; Ramezanzadeh, M. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance. Chem. Eng. J. 2016, 303, 511–528.

50

Ramezanzadeh, B.; Ghasemi, E.; Mahdavian, M.; Changizi, E.; Moghadam, M. H. M. Covalently-grafted graphene oxide nanosheets to improve barrier and corrosion protection properties of polyurethane coatings. Carbon 2015, 93, 555–573.

51

Joshi, B.; Samuel, E.; Park, C.; Kim, Y.; Lee, H. S.; Yoon, S. S. Bimetallic ZnFe2O4 nanosheets prepared via electrodeposition as binder-free high-performance supercapacitor electrodes. Appl. Surf. Sci. 2021, 559, 149951.

52

Zhou, S.; Zhou, Y.; Jiang, W.; Guo, H. J.; Wang, Z. X.; Li, X. H. Synthesis of Fe3O4 cluster microspheres/graphene aerogels composite as anode for high-performance lithium ion battery. Appl. Surf. Sci. 2018, 439, 927–933.

53

Jiang, S. S.; Huang, J.; Wang, Y.; Lu, S. Y.; Li, P.; Li, C. Q.; Li, F. Metal-organic frameworks derived magnetic Fe3O4/C for catalytic transfer hydrogenation of furfural to furfuryl alcohol. J. Chem. Technol. Biotechnol. 2021, 96, 639–649.

54

Yang, Z. W.; Xu, X. Q.; Liang, X. X.; Lei, C.; Wei, Y. L.; He, P. Q.; Lv, B. L.; Ma, H. C.; Lei, Z. Q. MIL-53(Fe)-graphene nanocomposites: Efficient visible-light photocatalysts for the selective oxidation of alcohols. Appl. Catal. B: Environ. 2016, 198, 112–123.

55

Zhang, W. H.; Mao, S. J.; Xu, J.; Xu, Q.; Zhang, M. H.; Zhou, J. M.; Song, L.; Guan, R. F.; Yue, L. Fabrication of three-dimensional hollow C@CoO@graphene composite anode for long-life Li-ion batteries. Electrochim. Acta 2018, 291, 206–215.

56

Li, C. P.; Liu, H.; Jiang, X. H.; Waterhouse, G. I. N.; Zhang, Z. M.; Yu, L. M. Hierarchical Fe3O4/C with a flower-like morphology: A highly efficient and reusable dye adsorbent. Synthetic Met. 2018, 246, 45–56.

57

Zhan, C. C.; Chen, F.; Yang, J. T.; Dai, D. X.; Cao, X. H.; Zhong, M. Q. Visible light responsive sulfated rare earth doped TiO2@fumed SiO2 composites with mesoporosity: Enhanced photocatalytic activity for methyl orange degradation. J. Hazard. Mater. 2014, 267, 88–97.

58

He, S.; Huang, Y. J.; Chen, G. N.; Feng, M. M.; Dai, H. M.; Yuan, B. H.; Chen, X. F. Effect of heat treatment on hydrophobic silica aerogel. J. Hazard. Mater. 2019, 362, 294–302.

59

Jian, X.; Xiao, X. Y.; Deng, L. J.; Tian, W.; Wang, X.; Mahmood, N.; Dou, S. X. Heterostructured nanorings of Fe–Fe3O4@C hybrid with enhanced microwave absorption performance. ACS Appl. Mater. Interfaces 2018, 10, 9369–9378.

60

Yu, Y. S.; Sun, K. W.; Tian, Y.; Li, X. Z.; Kramer, M. J.; Sellmyer, D. J.; Shield, J. E.; Sun, S. H. One-pot synthesis of urchin-like FePd-Fe3O4 and their conversion into exchange-coupled L10-FePd-Fe nanocomposite magnets. Nano Lett. 2013, 13, 4975–4979.

61

Wang, C.; Daimon, H.; Sun, S. H. Dumbbell-like Pt-Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction. Nano Lett. 2009, 9, 1493–1496.

Nano Research
Pages 9479-9491
Cite this article:
Tian W, Li J, Liu Y, et al. Large-scale synthesis of fluorine-free carbonyl iron-organic silicon hydrophobic absorbers with long term corrosion protection property. Nano Research, 2022, 15(10): 9479-9491. https://doi.org/10.1007/s12274-022-4569-y
Topics:

951

Views

30

Crossref

24

Web of Science

25

Scopus

1

CSCD

Altmetrics

Received: 10 April 2022
Revised: 17 May 2022
Accepted: 19 May 2022
Published: 08 July 2022
© Tsinghua University Press 2022
Return