Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Porous carbon skeletons (PCSs) derived from isocyanate-based aromatic polyimide foams (PIFs) by high-temperature pyrolysis are very promising in the fabrication of high-performance polymer composite foams for electromagnetic interference (EMI) shielding due to their efficient conductive networks and facile preparation process. However, severe volumetric shrinkage and low graphitization degree is not conducive to enhancing the shielding efficiency of the PCSs. Herein, ferric acetylacetonate and carbon-nanotube coating have been introduced in isocyanate-based PIFs to greatly suppress the serious shrinkage during pyrolysis and improve the graphitization degree of the final carbon foams through the Fe-catalytic graphitization process, thereby endowing them with better EMI-shielding performance even at lower pyrolysis temperature compared to the control samples. Moreover, compressible polydimethylsiloxane (PDMS) composite foams with the as-prepared carbon foams as prefabricated PCSs have also been fabricated, which could provide not only stable shielding effectiveness (SE) performance even after a thousand compressions, but also multiple functions of Joule heating, thermal insulation and infrared stealth. This study offers a feasible route to prepare high-performance PCSs in a more energy-efficient manner via PIF pyrolysis, which is very promising in the manufacture of multifunctional conductive polymer composite foams.
Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.
Zhang, Y.; Xu, M. K.; Wang, Z. H.; Zhao, T. Y.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 2022, 15, 4916–4924.
Guo, Y. Q.; Qiu, H.; Ruan, K. P.; Zhang, Y. L.; Gu, J. W. Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 2022, 14, 26.
Zeng, Z. H.; Jiang, F. Z.; Yue, Y.; Han, D. X.; Lin, L. C.; Zhao, S. Y.; Zhao, Y. B.; Pan, Z. Y.; Li, C. J.; Nyström, G. et al. Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 2020, 32, 1908496.
Yu, D. H.; Liao, Y.; Song, Y. C.; Wang, S. L.; Wan, H. Y.; Zeng, Y. H.; Yin, T.; Yang, W. H.; He, Z. Z. A super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport. Adv. Sci. 2020, 7, 2000177.
Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Man Hong, S.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.
Chen, Y.; Li, J. Z.; Li, T.; Zhang, L. K.; Meng, F. B. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon 2021, 180, 163–184.
Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845.
Li, J.; Wang, Y.; Yue, T. N.; Gao, Y. N.; Shi, Y. D.; Shen, J. B.; Wu, H.; Wang, M. Robust electromagnetic interference shielding, joule heating, thermal conductivity, and anti-dripping performances of polyoxymethylene with uniform distribution and high content of carbon-based nanofillers. Compos. Sci. Technol. 2021, 206, 108681.
Yao, B.; Hong, W.; Chen, T. W.; Han, Z. B.; Xu, X. W.; Hu, R. C.; Hao, J. Y.; Li, C. H.; Li, H.; Perini, S. E. et al. Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 2020, 32, 1907499.
Shen, B.; Li, Y.; Zhai, W. T.; Zheng, W. G. Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 2016, 8, 8050–8057.
Sun, Z. P.; Chen, J. L.; Jia, X. C.; Wang, G. Q.; Shen, B.; Zheng, W. G. Humidification of high-performance and multifunctional polyimide/carbon nanotube composite foams for enhanced electromagnetic shielding. Mater. Today Phys. 2021, 21, 100521.
Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.
Ling, J. Q.; Zhai, W. T.; Feng, W. W.; Shen, B.; Zhang, J. F.; Zheng, W. G. Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2013, 5, 2677–2684.
Chen, Y.; Zhang, H. B.; Yang, Y. B.; Wang, M.; Cao, A. Y.; Yu, Z. Z. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 2016, 26, 447–455.
Wu, X. Y.; Han, B. Y.; Zhang, H. B.; Xie, X.; Tu, T. X.; Zhang, Y.; Dai, Y.; Yang, R.; Yu, Z. Z. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122622.
Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Construction of shape-memory carbon foam composites for adjustable EMI shielding under self-fixable mechanical deformation. Chem. Eng. J. 2021, 405, 126927.
Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.
Li, Y. Q.; Samad, Y. A.; Polychronopoulou, K.; Liao, K. Lightweight and highly conductive aerogel-like carbon from sugarcane with superior mechanical and EMI shielding properties. ACS Sustain. Chem. Eng. 2015, 3, 1419–1427.
Yuan, Y.; Sun, X. X.; Yang, M. L.; Xu, F.; Lin, Z. S.; Zhao, X.; Ding, Y. J.; Li, J. J.; Yin, W. L.; Peng, Q. et al. Stiff, thermally stable and highly anisotropic wood-derived carbon composite monoliths for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2017, 9, 21371–21381.
Ma, X. H.; Li, Y.; Shen, B.; Zhang, L. H.; Chen, Z. P.; Liu, Y. F.; Zhai, W. T.; Zheng, W. G. Carbon composite networks with ultrathin skin layers of graphene film for exceptional electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2018, 10, 38255–38263.
Yuan, Y.; Ding, Y. J.; Wang, C. H.; Xu, F.; Lin, Z. S.; Qin, Y. Y.; Li, Y.; Yang, M. L.; He, X. D.; Peng, Q. et al. Multifunctional stiff carbon foam derived from bread. ACS Appl. Mater. Interfaces 2016, 8, 16852–16861.
Chen, J. L.; Yi, D.; Jia, X. C.; Wang, G. Q.; Sun, Z. P.; Zhang, L. H.; Liu, Y. F.; Shen, B.; Zheng, W. G. Biomass-based aligned carbon networks with double-layer construction for tunable electromagnetic shielding with ultra-low reflectivity. J. Mater. Sci. Technol. 2022, 103, 98–104.
Zhao, Z. H.; Hu, X. D.; Wang, H. Q.; Ye, M. Y.; Sang, Z. Y.; Ji, H. M.; Li, X. L.; Dai, Y. J. Superelastic 3D few-layer MoS2/carbon framework heterogeneous electrodes for highly reversible sodium-ion batteries. Nano Energy 2018, 48, 526–535.
Lei, S. W.; Guo, Q. G.; Shi, J. L.; Liu, L. Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength. Carbon 2010, 48, 2644–2646.
Zhang, L. Y.; Liu, M.; Roy, S.; Chu, E. K.; See, K. Y.; Hu, X. Phthalonitrile-based carbon foam with high specific mechanical strength and superior electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 2016, 8, 7422–7430.
Lin, Z. H.; Liu, J.; Peng, W.; Zhu, Y. Y.; Zhao, Y.; Jiang, K.; Peng, M.; Tan, Y. W. Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 2020, 14, 2109–2117.
Zhao, S.; Zhang, H. B.; Luo, J. Q.; Wang, Q. W.; Xu, B.; Hong, S.; Yu, Z. Z. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 2018, 12, 11193–11202.
Li, Y.; Zhang, H. B.; Zhang, L. H.; Shen, B.; Zhai, W. T.; Yu, Z. Z.; Zheng, W. G. One-pot sintering strategy for efficient fabrication of high-performance and multifunctional graphene foams. ACS Appl. Mater. Interfaces 2017, 9, 13323–13330.
Liu, L. X.; Chen, W.; Zhang, H. B.; Wang, Q. W.; Guan, F. L.; Yu, Z. Z. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197.
Inagaki, M.; Ohta, N.; Hishiyama, Y. Aromatic polyimides as carbon precursors. Carbon 2013, 61, 1–21.
Li, Y.; Shen, B.; Pei, X. L.; Zhang, Y. G.; Yi, D.; Zhai, W. T.; Zhang, L. H.; Wei, X. C.; Zheng, W. G. Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon 2016, 100, 375–385.
Luo, Y.; Li, C. F.; He, X.; Xiao, H.; Hu, J. H.; Zeng, K.; Yang, G. Porous carbon foam based on coassembled graphene and adenine-polyimide for electromagnetic interference shielding. Polymer 2021, 236, 124328.
Li, C. F.; Zhou, C. X.; Lv, J. B.; Liang, B.; Li, R. K.; Liu, Y.; Hu, J. H.; Zeng, K.; Yang, G. Bio-molecule adenine building block effectively enhances electromagnetic interference shielding performance of polyimide-derived carbon foam. Carbon 2019, 149, 190–202.
Li, J. W.; Ding, Y. Q.; Yu, N.; Gao, Q.; Fan, X.; Wei, X.; Zhang, G. C.; Ma, Z. L.; He, X. H. Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon 2020, 158, 45–54.
Liu, Z.; Lv, Y. X.; Fang, J. Y.; Zuo, X. D.; Zhang, C. Y.; Yue, X. G. A new method for an efficient porous carbon/Fe3O4 composite based electromagnetic wave absorber derived from a specially designed polyimide. Compos. B:Eng. 2018, 155, 148–155.
Xu, L. L.; Xiao, L. H.; Jia, P.; Goossens, K.; Liu, P.; Li, H.; Cheng, C. G.; Huang, Y.; Bielawski, C. W.; Geng, J. X. Lightweight and ultrastrong polymer foams with unusually superior flame retardancy. ACS Appl. Mater. Interfaces 2017, 9, 26392–26399.
Ni, L.; Luo, Y. F.; Peng, X. H.; Zhou, S. T.; Zou, H. W.; Liang, M. Investigation of the properties and structure of semi-rigid closed-cellular polyimide foams with different diamine structures. Polymer 2021, 229, 123957.
Lee, D.; Kim, J.; Kim, S.; Kim, G.; Roh, J.; Lee, S.; Han, H. Tunable pore size and porosity of spherical polyimide aerogel by introducing swelling method based on spherulitic formation mechanism. Micropor. Mesopor. Mater. 2019, 288, 109546.
Yang, M.; Zhang, C. H.; Lv, Q. T.; Sun, G. H.; Bi, C. L.; Guo, S. X.; Dong, H. X.; Liu, L. J. Rational design of novel efficient palladium electrode embellished 3D hierarchical graphene/polyimide foam for hydrogen peroxide electroreduction. ACS Appl. Mater. Interfaces 2020, 12, 934–944.
Jing, H.; Miao, Z. N.; Zeng, Z.; Liu, H.; Zhou, S. T.; Zou, H. W.; Liang, M. Carbonization of graphene-doped isocyanate-based polyimide foams to achieve carbon foams with excellent electromagnetic interference shielding performance. Materials 2021, 14, 7551.
Wang, G. Q.; Yi, D.; Jia, X. C.; Chen, J. L.; Shen, B.; Zheng, W. G. Structural design of compressible shape-memory foams for smart self-fixable electromagnetic shielding with reduced reflection. Mater. Today Phys. 2022, 22, 100612.
Chen, J. L.; Shen, B.; Jia, X. C.; Liu, Y. F.; Zheng, W. G. Lightweight and compressible anisotropic honeycomb-like graphene composites for highly tunable electromagnetic shielding with multiple functions. Mater. Today Phys. 2022, 24, 100695.
Yang, S. J.; Yu, J.; Yao, C. L.; Li, S. K.; Xie, A. J. Preparation and electrocatalytic performance of N-doped hierarchical porous carbon loaded with Fe/Fe5C2 nanoparticles. J. Alloys Compd. 2022, 903, 163874.
Long, S. S.; Feng, Y. C.; He, F. L.; Zhao, J. Z.; Bai, T.; Lin, H. B.; Cai, W. L.; Mao, C. W.; Chen, Y. H.; Gan, L. H. et al. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy 2021, 85, 105973.
Tang, L.; Mao, Q. Y.; You, Z. H.; Yao, Z.; Zhu, X. D.; Zhong, Q. F.; Xiao, J. Catalytic graphitization in anthracite by reduced iron particles and investigating the mechanism of catalytic transformation via molecular dynamics. Carbon 2022, 188, 336–348.
Li, H. T.; Zhang, H.; Li, K. J.; Zhang, J. L.; Sun, M. M.; Su, B. X. Catalytic graphitization of coke carbon by iron: Understanding the evolution of carbon structure, morphology and lattice fringes. Fuel 2020, 279, 118531.
Samsul Kamal, A.; Hafidzah Jabarullah, N.; Othman, R. Catalytic graphitization of oil palm frond using iron and silica. Mater. Today: Proc. 2020, 31, 211–216.
Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Construction of compressible polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 2021, 173, 932–940.
Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.
Zhang, L. K.; Chen, Y.; Liu, Q.; Deng, W. T.; Yue, Y. Q.; Meng, F. B. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 111, 57–65.
Liang, L. Y.; Li, Q. M.; Yan, X.; Feng, Y. Z.; Wang, Y. M.; Zhang, H. B.; Zhou, X. P.; Liu, C. T.; Shen, C. Y.; Xie, X. L. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 2021, 15, 6622–6632.
Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Waterproof MXene-decorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and Joule heating. Compos. B:Eng. 2020, 198, 108250.
Jiang, J. W.; Wang, J. S. Joule heating and thermoelectric properties in short single-walled carbon nanotubes: Electron-phonon interaction effect. J. Appl. Phys. 2011, 110, 124319.