AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

siRNA-functionalized lanthanide nanoparticle enables efficient endosomal escape and cancer treatment

Chanchan Yu1,2,§Kun Li1,§Lin Xu1Bo Li1Chunhui Li1Shuai Guo1Ziyue Li1Yuquan Zhang1Abid Hussain1Hong Tan3Mengyu Zhang3Yongxiang Zhao3( )Yuanyu Huang1( )Xing-Jie Liang2 ( )
School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning 530021, China

§ Chanchan Yu and Kun Li contributed equally to this work.

Show Author Information

Graphical Abstract

In this work, we explored the basic interaction of the double-stranded small interfering RNA (siRNA) with lanthanide NaGdF4 nanoparticles (NPs) and discovered that an efficient encapsulation and rapid endosomal escape of siRNA from the endosome/lysosome were achieved by utilizing the dual capacity of siRNA loading and endosomal escape of NaGdF4 NPs.

Abstract

Attaching DNA/RNA to nanomaterials is the basis for nucleic acid-based assembly and drug delivery. Herein, we report that small interfering RNA (siRNA) effectively coordinates with ligand-free lanthanide nanoparticles (NaGdF4 NPs), and forms siRNA/NaGdF4 spherical nucleic acids (SNA). The coordination is primarily attributed to the interaction between Gd and phosphate backbone of the siRNA. Surprisingly, an efficient encapsulation and rapid endosomal escape of siRNA from the endosome/lysosome were achieved, due to its flexible ability to bound to phospholipid head of endosomal membrane, thereby disrupting the membrane structure. Resorting to the dual properties of NaGdF4 NPs, siRNA loading, and endosomal escape, siRNA targeting programmed cell death-ligand 1 (siPD-L1)/NaGdF4 SNA triggers significant gene silencing in vitro and in vivo, and effectively represses the tumor growth in both CT26 tumor model and 4T1 orthotopic murine model.

Electronic Supplementary Material

Download File(s)
12274_2022_4573_MOESM1_ESM.pdf (1.1 MB)

References

1

Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725–10815.

2

Gupta, S. K.; Kadam, R. M.; Pujari, P. K. Lanthanide spectroscopy in probing structure–property correlation in multi-site photoluminescent phosphors. Coord. Chem. Rev. 2020, 420, 213405.

3

Zhou, W. H.; Saran, R.; Liu, J. W. Metal sensing by DNA. Chem. Rev. 2017, 117, 8272–8325.

4

Pu, F.; Ren, J. S.; Qu, X. G. Nucleobases, nucleosides, and nucleotides: Versatile biomolecules for generating functional nanomaterials. Chem. Soc. Rev. 2018, 47, 1285–1306.

5

He, Y. P.; Lopez, A.; Zhang, Z. J.; Chen, D.; Yang, R. H.; Liu, J. W. Nucleotide and DNA coordinated lanthanides: From fundamentals to applications. Coord. Chem. Rev. 2019, 387, 235–248.

6

Jastrząb, R.; Nowak, M.; Skrobańska, M.; Tolińska, A.; Zabiszak, M.; Gabryel, M.; Marciniak, Ł.; Kaczmarek, M. T. DNA as a target for lanthanide(III) complexes influence. Coord. Chem. Rev. 2019, 382, 145–159.

7

Ge, H.; Wang, D. Y.; Pan, Y.; Guo, Y. Y.; Li, H. Y.; Zhang, F.; Zhu, X. Y.; Li, Y. H.; Zhang, C.; Huang, L. Sequence-dependent DNA functionalization of upconversion nanoparticles and their programmable assemblies. Angew. Chem., Int. Ed. 2020, 59, 8133–8137.

8

Xu, L.; Zhang, P. P.; Liu, Y.; Fang, X. Q.; Zhang, Z. J.; Liu, Y. B.; Peng, L. L.; Liu, J. W. Continuously tunable nucleotide/lanthanide coordination nanoparticles for DNA adsorption and sensing. ACS Omega 2018, 3, 9043–9051.

9

Lu, C.; Huang, Z. C.; Liu, B. W.; Liu, Y. B.; Ying, Y. B.; Liu, J. W. Poly-cytosine DNA as a high-affinity ligand for inorganic nanomaterials. Angew. Chem., Int. Ed. 2017, 56, 6208–6212.

10

Lopez, A.; Zhao, Y.; Huang, Z. C.; Guo, Y. F.; Guan, S. K.; Jia, Y.; Liu, J. W. Poly-cytosine deoxyribonucleic acid strongly anchoring on graphene oxide due to flexible backbone phosphate interactions. Adv. Mater. Interfaces 2021, 8, 2001798.

11

Wittrup, A.; Lieberman, J. Knocking down disease: A progress report on siRNA therapeutics. Nat. Rev. Genet. 2015, 16, 543–552.

12

Yonezawa, S.; Koide, H.; Asai, T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv. Drug Deliv. Rev. 2020, 154–155, 64–78.

13

Whitehead, K. A.; Langer, R.; Anderson, D. G. Knocking down barriers: Advances in siRNA delivery. Nat. Rev. Drug Discov. 2009, 8, 129–138.

14

Liu, J.; Chen, C.; Wei, T.; Gayet, O.; Loncle, C.; Borge, L.; Dusetti, N.; Ma, X. W.; Marson, D.; Laurini, E. et al. Dendrimeric nanosystem consistently circumvents heterogeneous drug response and resistance in pancreatic cancer. Exploration 2021, 1, 21–34.

15

Wang, Z. R.; Song, L. L.; Liu, Q.; Tian, R.; Shang, Y. X.; Liu, F. S.; Liu, S. L.; Zhao, S.; Han, Z. H.; Sun, J. S. et al. A tubular DNA nanodevice as a siRNA/chemo-drug co-delivery vehicle for combined cancer therapy. Angew. Chem., Int. Ed. 2021, 60, 2594–2598.

16

Rahman, M. A.; Wang, P. F.; Zhao, Z. X.; Wang, D. S.; Nannapaneni, S.; Zhang, C.; Chen, Z. J.; Griffith, C. C.; Hurwitz, S. J.; Chen, Z. G. et al. Systemic delivery of Bc12-targeting siRNA by DNA nanoparticles suppresses cancer cell growth. Angew. Chem., Int. Ed. 2017, 56, 16023–16027.

17

Liu, J. B.; Lu, X. H.; Wu, T. T.; Wu, X. H.; Han, L.; Ding, B. Q. Branched antisense and siRNA co-assembled nanoplatform for combined gene silencing and tumor therapy. Angew. Chem., Int. Ed. 2021, 60, 1853–1860.

18

Guo, S.; Li, K.; Hu, B.; Li, C. H.; Zhang, M. J.; Hussain, A.; Wang, X. X.; Cheng, Q.; Yang, F.; Ge, K. et al. Membrane-destabilizing ionizable lipid empowered imaging-guided siRNA delivery and cancer treatment. Exploration 2021, 1, 35–49.

19

Costa, D.; Burrows, H. D.; Da Graça Miguel, M. Changes in hydration of lanthanide ions on binding to DNA in aqueous solution. Langmuir 2005, 21, 10492–10496.

20

Wang, G. J.; Angelovski, G. Highly potent MRI contrast agent displaying outstanding sensitivity to zinc ions. Angew. Chem., Int. Ed. 2021, 60, 5734–5738.

21

Zhao, M. Y.; Wang, R.; Li, B. H.; Fan, Y.; Wu, Y. F.; Zhu, X. Y.; Zhang, F. Precise in vivo inflammation imaging using in situ responsive cross-linking of glutathione-modified ultra-small NIR-II lanthanide nanoparticles. Angew. Chem., Int. Ed. 2019, 58, 2050–2054.

22

Liu, Y. B.; Liu, J. W. Growing a nucleotide/lanthanide coordination polymer shell on liposomes. Langmuir 2019, 35, 11217–11224.

23

Liu, Y. B.; Liu, J. W. Leakage and rupture of lipid membranes by charged polymers and nanoparticles. Langmuir 2020, 36, 810–818.

24

Sabin, J.; Prieto, G.; Sennato, S.; Ruso, J. M.; Angelini, R.; Bordi, F.; Sarmiento, F. Effect of Gd3+ on the colloidal stability of liposomes. Phys. Rev. E 2006, 74, 031913.

25

Azuma, Y.; Imai, H.; Kawaguchi, Y.; Nakase, I.; Kimura, H.; Futaki, S. Modular redesign of a cationic lytic peptide to promote the endosomal escape of biomacromolecules. Angew. Chem., Int. Ed. 2018, 57, 12771–12774.

26

Signarvic, R. S.; DeGrado, W. F. Metal-binding dependent disruption of membranes by designed helices. J. Am. Chem. Soc. 2009, 131, 3377–3384.

27

Erazo-Oliveras, A.; Najjar, K.; Truong, D.; Wang, T. Y.; Brock, D. J.; Prater, A. R.; Pellois, J. P. The late endosome and its lipid BMP act as gateways for efficient cytosolic access of the delivery agent dfTAT and its macromolecular cargos. Cell Chem. Biol. 2016, 23, 598–607.

28

Van Meer, G.; Voelker, D. R.; Feigenson, G. W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124.

29

Liu, C. Y.; Gao, Z. Y.; Zeng, J. F.; Hou, Y.; Fang, F.; Li, Y. L.; Qiao, R. R.; Shen, L.; Lei, H.; Yang, W. S. et al. Magnetic/upconversion fluorescent NaGdF4: Yb, Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo. ACS Nano 2013, 7, 7227–7240.

30

Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 2011, 11, 835–840.

31

Collier, J. L.; Weiss, S. A.; Pauken, K. E.; Sen, D. R.; Sharpe, A. H. Not-so-opposite ends of the spectrum: CD8+ T cell dysfunction across chronic infection, cancer and autoimmunity. Nat. Immunol. 2021, 22, 809–819.

32

Li, C. H.; Zhou, J. H.; Wu, Y. D.; Dong, Y. L.; Du, L. L.; Yang, T. R.; Wang, Y. H.; Guo, S.; Zhang, M. J.; Hussain, A. et al. Core role of hydrophobic core of polymeric nanomicelle in endosomal escape of siRNA. Nano Lett. 2021, 21, 3680–3689.

Nano Research
Pages 9160-9168
Cite this article:
Yu C, Li K, Xu L, et al. siRNA-functionalized lanthanide nanoparticle enables efficient endosomal escape and cancer treatment. Nano Research, 2022, 15(10): 9160-9168. https://doi.org/10.1007/s12274-022-4573-2
Topics:

1239

Views

14

Crossref

13

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 14 March 2022
Revised: 18 May 2022
Accepted: 22 May 2022
Published: 25 June 2022
© Tsinghua University Press 2022
Return