Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Attaching DNA/RNA to nanomaterials is the basis for nucleic acid-based assembly and drug delivery. Herein, we report that small interfering RNA (siRNA) effectively coordinates with ligand-free lanthanide nanoparticles (NaGdF4 NPs), and forms siRNA/NaGdF4 spherical nucleic acids (SNA). The coordination is primarily attributed to the interaction between Gd and phosphate backbone of the siRNA. Surprisingly, an efficient encapsulation and rapid endosomal escape of siRNA from the endosome/lysosome were achieved, due to its flexible ability to bound to phospholipid head of endosomal membrane, thereby disrupting the membrane structure. Resorting to the dual properties of NaGdF4 NPs, siRNA loading, and endosomal escape, siRNA targeting programmed cell death-ligand 1 (siPD-L1)/NaGdF4 SNA triggers significant gene silencing in vitro and in vivo, and effectively represses the tumor growth in both CT26 tumor model and 4T1 orthotopic murine model.
Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725–10815.
Gupta, S. K.; Kadam, R. M.; Pujari, P. K. Lanthanide spectroscopy in probing structure–property correlation in multi-site photoluminescent phosphors. Coord. Chem. Rev. 2020, 420, 213405.
Zhou, W. H.; Saran, R.; Liu, J. W. Metal sensing by DNA. Chem. Rev. 2017, 117, 8272–8325.
Pu, F.; Ren, J. S.; Qu, X. G. Nucleobases, nucleosides, and nucleotides: Versatile biomolecules for generating functional nanomaterials. Chem. Soc. Rev. 2018, 47, 1285–1306.
He, Y. P.; Lopez, A.; Zhang, Z. J.; Chen, D.; Yang, R. H.; Liu, J. W. Nucleotide and DNA coordinated lanthanides: From fundamentals to applications. Coord. Chem. Rev. 2019, 387, 235–248.
Jastrząb, R.; Nowak, M.; Skrobańska, M.; Tolińska, A.; Zabiszak, M.; Gabryel, M.; Marciniak, Ł.; Kaczmarek, M. T. DNA as a target for lanthanide(III) complexes influence. Coord. Chem. Rev. 2019, 382, 145–159.
Ge, H.; Wang, D. Y.; Pan, Y.; Guo, Y. Y.; Li, H. Y.; Zhang, F.; Zhu, X. Y.; Li, Y. H.; Zhang, C.; Huang, L. Sequence-dependent DNA functionalization of upconversion nanoparticles and their programmable assemblies. Angew. Chem., Int. Ed. 2020, 59, 8133–8137.
Xu, L.; Zhang, P. P.; Liu, Y.; Fang, X. Q.; Zhang, Z. J.; Liu, Y. B.; Peng, L. L.; Liu, J. W. Continuously tunable nucleotide/lanthanide coordination nanoparticles for DNA adsorption and sensing. ACS Omega 2018, 3, 9043–9051.
Lu, C.; Huang, Z. C.; Liu, B. W.; Liu, Y. B.; Ying, Y. B.; Liu, J. W. Poly-cytosine DNA as a high-affinity ligand for inorganic nanomaterials. Angew. Chem., Int. Ed. 2017, 56, 6208–6212.
Lopez, A.; Zhao, Y.; Huang, Z. C.; Guo, Y. F.; Guan, S. K.; Jia, Y.; Liu, J. W. Poly-cytosine deoxyribonucleic acid strongly anchoring on graphene oxide due to flexible backbone phosphate interactions. Adv. Mater. Interfaces 2021, 8, 2001798.
Wittrup, A.; Lieberman, J. Knocking down disease: A progress report on siRNA therapeutics. Nat. Rev. Genet. 2015, 16, 543–552.
Yonezawa, S.; Koide, H.; Asai, T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv. Drug Deliv. Rev. 2020, 154–155, 64–78.
Whitehead, K. A.; Langer, R.; Anderson, D. G. Knocking down barriers: Advances in siRNA delivery. Nat. Rev. Drug Discov. 2009, 8, 129–138.
Liu, J.; Chen, C.; Wei, T.; Gayet, O.; Loncle, C.; Borge, L.; Dusetti, N.; Ma, X. W.; Marson, D.; Laurini, E. et al. Dendrimeric nanosystem consistently circumvents heterogeneous drug response and resistance in pancreatic cancer. Exploration 2021, 1, 21–34.
Wang, Z. R.; Song, L. L.; Liu, Q.; Tian, R.; Shang, Y. X.; Liu, F. S.; Liu, S. L.; Zhao, S.; Han, Z. H.; Sun, J. S. et al. A tubular DNA nanodevice as a siRNA/chemo-drug co-delivery vehicle for combined cancer therapy. Angew. Chem., Int. Ed. 2021, 60, 2594–2598.
Rahman, M. A.; Wang, P. F.; Zhao, Z. X.; Wang, D. S.; Nannapaneni, S.; Zhang, C.; Chen, Z. J.; Griffith, C. C.; Hurwitz, S. J.; Chen, Z. G. et al. Systemic delivery of Bc12-targeting siRNA by DNA nanoparticles suppresses cancer cell growth. Angew. Chem., Int. Ed. 2017, 56, 16023–16027.
Liu, J. B.; Lu, X. H.; Wu, T. T.; Wu, X. H.; Han, L.; Ding, B. Q. Branched antisense and siRNA co-assembled nanoplatform for combined gene silencing and tumor therapy. Angew. Chem., Int. Ed. 2021, 60, 1853–1860.
Guo, S.; Li, K.; Hu, B.; Li, C. H.; Zhang, M. J.; Hussain, A.; Wang, X. X.; Cheng, Q.; Yang, F.; Ge, K. et al. Membrane-destabilizing ionizable lipid empowered imaging-guided siRNA delivery and cancer treatment. Exploration 2021, 1, 35–49.
Costa, D.; Burrows, H. D.; Da Graça Miguel, M. Changes in hydration of lanthanide ions on binding to DNA in aqueous solution. Langmuir 2005, 21, 10492–10496.
Wang, G. J.; Angelovski, G. Highly potent MRI contrast agent displaying outstanding sensitivity to zinc ions. Angew. Chem., Int. Ed. 2021, 60, 5734–5738.
Zhao, M. Y.; Wang, R.; Li, B. H.; Fan, Y.; Wu, Y. F.; Zhu, X. Y.; Zhang, F. Precise in vivo inflammation imaging using in situ responsive cross-linking of glutathione-modified ultra-small NIR-II lanthanide nanoparticles. Angew. Chem., Int. Ed. 2019, 58, 2050–2054.
Liu, Y. B.; Liu, J. W. Growing a nucleotide/lanthanide coordination polymer shell on liposomes. Langmuir 2019, 35, 11217–11224.
Liu, Y. B.; Liu, J. W. Leakage and rupture of lipid membranes by charged polymers and nanoparticles. Langmuir 2020, 36, 810–818.
Sabin, J.; Prieto, G.; Sennato, S.; Ruso, J. M.; Angelini, R.; Bordi, F.; Sarmiento, F. Effect of Gd3+ on the colloidal stability of liposomes. Phys. Rev. E 2006, 74, 031913.
Azuma, Y.; Imai, H.; Kawaguchi, Y.; Nakase, I.; Kimura, H.; Futaki, S. Modular redesign of a cationic lytic peptide to promote the endosomal escape of biomacromolecules. Angew. Chem., Int. Ed. 2018, 57, 12771–12774.
Signarvic, R. S.; DeGrado, W. F. Metal-binding dependent disruption of membranes by designed helices. J. Am. Chem. Soc. 2009, 131, 3377–3384.
Erazo-Oliveras, A.; Najjar, K.; Truong, D.; Wang, T. Y.; Brock, D. J.; Prater, A. R.; Pellois, J. P. The late endosome and its lipid BMP act as gateways for efficient cytosolic access of the delivery agent dfTAT and its macromolecular cargos. Cell Chem. Biol. 2016, 23, 598–607.
Van Meer, G.; Voelker, D. R.; Feigenson, G. W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124.
Liu, C. Y.; Gao, Z. Y.; Zeng, J. F.; Hou, Y.; Fang, F.; Li, Y. L.; Qiao, R. R.; Shen, L.; Lei, H.; Yang, W. S. et al. Magnetic/upconversion fluorescent NaGdF4: Yb, Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo. ACS Nano 2013, 7, 7227–7240.
Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 2011, 11, 835–840.
Collier, J. L.; Weiss, S. A.; Pauken, K. E.; Sen, D. R.; Sharpe, A. H. Not-so-opposite ends of the spectrum: CD8+ T cell dysfunction across chronic infection, cancer and autoimmunity. Nat. Immunol. 2021, 22, 809–819.
Li, C. H.; Zhou, J. H.; Wu, Y. D.; Dong, Y. L.; Du, L. L.; Yang, T. R.; Wang, Y. H.; Guo, S.; Zhang, M. J.; Hussain, A. et al. Core role of hydrophobic core of polymeric nanomicelle in endosomal escape of siRNA. Nano Lett. 2021, 21, 3680–3689.