Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Highly sensitive and stable β-Ga2O3 DUV phototransistor with local back-gate structure and its neuromorphic application

Xiao-Xi Li1Guang Zeng1Yu-Chun Li1Qiu-Jun Yu1Meng-Yang Liu1Li-Yuan Zhu1Wenjun Liu1()Ying-Guo Yang1,2()David Wei Zhang1Hong-Liang Lu1 ()
State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute & Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
Show Author Information

Graphical Abstract

View original image Download original image
The fabricated β-Ga2O3 phototransistor with local back-gate structure exhibits a high responsivity of 1.01 × 107 A/W. The first-principles calculations reveal the decent stability of β-Ga2O3 nanosheet against oxidation and humidity without significant performance degradations.

Abstract

Deep ultraviolet (DUV) phototransistors are key integral of optoelectronics bearing a wide spectrum of applications in flame sensor, military detector, oil spill detection, biological sensor, and artificial intelligence fields. In order to further improve the responsivity of UV photodetectors based on β-Ga2O3, in present work, high-performance β-Ga2O3 phototransistors with local back-gate structure were experimentally demonstrated. The phototransistor shows excellent DUV photoelectrical performance with a high responsivity of 1.01 × 107 A/W, a high external quantum efficiency of 5.02 × 109%, a sensitive detectivity of 2.98 × 1015 Jones, and a fast rise time of 0.2 s under 250 nm illumination. Besides, first-principles calculations reveal the decent stability of β-Ga2O3 nanosheet against oxidation and humidity without significant performance degradations. Additionally, the hexagonal boron nitride (h-BN)/β-Ga2O3 phototransistor can behave as a photonic synapse with ultralow power consumption of ~ 9.6 fJ per spike, which shows its potential for neuromorphic computing tasks such as facial recognition. This β-Ga2O3 phototransistor will provide a perspective for the next generation optoelectrical systems.

Electronic Supplementary Material

Download File(s)
12274_2022_4574_MOESM1_ESM.pdf (2.8 MB)

References

1

Gong, C. H.; Chu, J. W.; Qian, S. F.; Yin, C. J.; Hu, X. Z.; Wang, H. B.; Wang, Y.; Ding, X.; Jiang, S. C.; Li, A. L. et al. Large-scale ultrathin 2D wide-bandgap BiOBr nanoflakes for gate-controlled deep-ultraviolet phototransistors. Adv. Mater. 2020, 32, e1908242.

2

Guo, F. W.; Yang, B.; Yuan, Y. B.; Xiao, Z. G.; Dong, Q. F.; Bi, Y.; Huang, J. S. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 2012, 7, 798–802.

3

Kong, W. Y.; Wu, G. A.; Wang, K. Y.; Zhang, T. F.; Zou, Y. F.; Wang, D. D.; Luo, L. B. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv. Mater. 2016, 28, 10725–10731.

4

Zhang, Y.; Li, S. Y.; Li, Z. L.; Liu, H.; Liu, X. Y.; Chen, J. X.; Fang, X. S. High-performance two-dimensional perovskite Ca2Nb3O10 UV photodetectors. Nano Lett. 2021, 21, 382–388.

5

Chen, J. X.; Li, X. X.; Ma, H. P.; Huang, W.; Ji, Z. G.; Xia, C. T.; Lu, H. L.; Zhang, D. W. Investigation of the mechanism for ohmic contact formation in Ti/Al/Ni/Au contacts to β-Ga2O3 nanobelt field-effect transistors. ACS Appl. Mater. Interfaces 2019, 11, 32127–32134.

6

Alamri, A. M.; Leung, S.; Vaseem, M.; Shamim, A.; He, J. H. Fully inkjet-printed photodetector using a graphene/perovskite/graphene heterostructure. IEEE Trans. on Electron Devices 2019, 66, 2657–2661.

7

Chen, J. X.; Ouyang, W. X.; Yang, W.; He, J. H.; Fang, X. S. Recent progress of heterojunction ultraviolet photodetectors: Materials, integrations, and applications. Adv. Funct. Mater. 2020, 30, 1909909.

8

Teng, F.; Hu, K.; Ouyang, W. X.; Fang, X. S. Photoelectric detectors based on inorganic p-type semiconductor materials. Adv. Mater. 2018, 30, e1706262.

9

Huang, H. C.; Kim, M.; Zhan, X.; Chabak, K.; Kim, J. D.; Kvit, A.; Liu, D.; Ma, Z. Q.; Zuo, J. M.; Li, X. L. High aspect ratio β-Ga2O3 fin arrays with low-interface charge density by inverse metal-assisted chemical etching. ACS Nano 2019, 13, 8784–8792.

10

Wu, D.; Zhao, Z. H.; Lu, W.; Rogée, L.; Zeng, L. H.; Lin, P.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed. Nano Res. 2021, 14, 1973–1979.

11

Hou, X. H.; Zhao, X. L.; Zhang, Y.; Zhang, Z. F.; Liu, Y.; Qin, Y.; Tan, P. J.; Chen, C.; Yu, S. J.; Ding, M. F. et al. High-performance harsh-environment-resistant GaOX solar-blind photodetectors via defect and doping engineering. Adv. Mater. 2022, 34, 2106923.

12

Chen, J. X.; Li, X. X.; Tao, J. J.; Cui, H. Y.; Huang, W.; Ji, Z. G.; Sai, Q. L.; Xia, C. T.; Lu, H. L.; Zhang, D. W. Fabrication of a Nb-doped β-Ga2O3 nanobelt field-effect transistor and its low-temperature behavior. ACS Appl. Mater. Interfaces 2020, 12, 8437–8445.

13

Nan, H. Y.; Ni, Z. H.; Wang, J.; Zafar, Z.; Shi, Z. X.; Wang, Y. Y. The thermal stability of graphene in air investigated by Raman spectroscopy. J. Raman Spectrosc. 2013, 44, 1018–1021.

14

Usami, S.; Ando, Y.; Tanaka, A.; Nagamatsu, K.; Deki, M.; Kushimoto, M.; Nitta, S.; Honda, Y.; Amano, H.; Sugawara, Y. et al. Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate. Appl. Phys. Lett. 2018, 112, 182106.

15

Zhang, J. Y.; Shi, J. L.; Qi, D. C.; Chen, L.; Zhang, K. H. L. Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Mater. 2020, 8, 020906.

16

Kim, S.; Oh, S.; Kim, J. Ultrahigh deep-UV sensitivity in graphene-gated β-Ga2O3 phototransistors. ACS Photonics 2019, 6, 1026–1032.

17

Liu, Y. X.; Du, L. L.; Liang, G. D.; Mu, W. X.; Jia, Z. T.; Xu, M. S.; Xin, Q.; Tao, X. T.; Song, A. M. Ga2O3 field-effect-transistor-based solar-blind photodetector with fast response and high photo-to-dark current ratio. IEEE Electron Device Lett. 2018, 39, 1696–1699.

18

Li, X. X.; Sun, Y.; Zeng, G.; Li, Y. C.; Zhang, R.; Sai, Q. L.; Xia, C. T.; Zhang, D. W.; Yang, Y. G.; Lu, H. L. Effective suppression of MIS interface defects using boron nitride toward high-performance Ta-doped-β-Ga2O3 MISFETs. J. Phys. Chem. Lett. 2022, 13, 3377–3381.

19

Zhang, F. B.; Saito, K.; Tanaka, T.; Nishio, M.; Guo, Q. X. Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition. J. Cryst. Growth 2014, 387, 96–100.

20

Sun, Z.; Yang, L. H.; Shen, X. C.; Chen, Z. H. Anisotropic Raman spectroscopy of a single β-Ga2O3 nanobelt. Chin. Sci. Bull. 2012, 57, 565–568.

21

Bae, J.; Kim, H. W.; Kang, I. H.; Yang, G.; Kim, J. High breakdown voltage quasi-two-dimensional β-Ga2O3 field-effect transistors with a boron nitride field plate. Appl. Phys. Lett. 2018, 112, 122102.

22

Kwon, J.; Hong, Y. K.; Han, G.; Omkaram, I.; Choi, W.; Kim, S.; Yoon, Y. Giant photoamplification in indirect-bandgap multilayer MoS2 phototransistors with local bottom-gate structures. Adv. Mater. 2015, 27, 2224–2230.

23

Huang, J. K.; Wan, Y.; Shi, J. J.; Zhang, J.; Wang, Z. H.; Wang, W. X.; Yang, N.; Liu, Y.; Lin, C. H.; Guan, X. W. et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 2022, 605, 262–267.

24

Li, Z.; Liu, Y. H.; Zhang, A. Y.; Liu, Q. Z.; Shen, C. F.; Wu, F. Q.; Xu, C.; Chen, M. R.; Fu, H. Y.; Zhou, C. W. Quasi-two-dimensional β-Ga2O3 field effect transistors with large drain current density and low contact resistance via controlled formation of interfacial oxygen vacancies. Nano Res. 2019, 12, 143–148.

25

Li, X. X.; Chen, X. Y.; Chen, J. X.; Zeng, G.; Li, Y. C.; Huang, W.; Ji, Z. G.; Zhang, D. W.; Lu, H. L. Dual-gate MoS2 phototransistor with atomic-layer-deposited HfO2 as top-gate dielectric for ultrahigh photoresponsivity. Nanotechnology 2021, 32, 215203.

26

Si. M. W. ; Yang, L. M. ; Zhou, H. ; Ye. P. D. β-Ga2O3 nanomembrane negative capacitance field-effect transistors with steep subthreshold slope for wide band gap logic applications. ACS Omega 2017, 2, 7136–7140.

27

Kim, J.; Mastro, M. A.; Tadjer, M. J.; Kim, J. Quasi-two-dimensional h-BN/β-Ga2O3 heterostructure metal-insulator-semiconductor field-effect transistor. ACS Appl. Mater. Interfaces 2017, 9, 21322–21327.

28

Zhou, H.; Si, M. W.; Alghamdi, S.; Qiu, G.; Yang, L. M.; Ye, P. D. High-performance depletion/enhancement mode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm. IEEE Electron Device Lett. 2017, 38, 103–106.

29

Kim, J.; Mastro, M. A.; Tadjer, M. J.; Kim, J. Heterostructure WSe2-Ga2O3 junction field-effect transistor for low-dimensional high-power electronics. ACS Appl. Mater. Interfaces 2018, 10, 29724–29729.

30

Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.

31

Kim, S.; Kim, J. Highly selective ozone-treated β-Ga2O3 solar-blind deep-UV photodetectors. Appl. Phys. Lett. 2020, 117, 261101.

32

Pradhan, B.; Das, S.; Li, J. X.; Chowdhury, F.; Cherusseri, J.; Pandey, D.; Dev, D.; Krishnaprasad, A.; Barrios, E.; Towers, A. et al. Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci. Adv. 2020, 6, eaay5225.

33

Furchi, M. M.; Polyushkin, D. K.; Pospischil, A.; Mueller, T. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 2014, 14, 6165–6170.

34

Pak, J.; Lee, I.; Cho, K.; Kim, J. K.; Jeong, H.; Hwang, W. T.; Ahn, G. H.; Kang, K.; Yu, W. J.; Javey, A. et al. Intrinsic optoelectronic characteristics of MoS2 phototransistors via a fully transparent van der Waals heterostructure. ACS Nano 2019, 13, 9638–9646.

35

Zeng, L. H. ; Wu, D. ; Jie, J. S. ; Ren, X. Y. ; Hu, X. ; Lau, S. P. ; Chai, Y. ; Tsang, Y. H. van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 μm. Adv. Mater. 2020, 32, 2004412.

36

Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.

37

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

38

Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterostructure. Adv. Funct. Mater. 2018, 28, 1705970.

39

Li, Z.; Feng, Z. Q.; Xu, Y.; Feng, Q.; Zhu, W. D.; Chen, D. Z.; Zhou, H.; Zhang, J. C.; Zhang, C. F.; Hao, Y. High performance β-Ga2O3 solar-blind metal-oxide-semiconductor field-effect phototransistor with hafnium oxide gate dielectric process. IEEE Electron Device Lett. 2021, 42, 545–548.

40

Ahn, J.; Ma, J.; Lee, D.; Lin, Q. B.; Park, Y.; Lee, O.; Sim, S.; Lee, K.; Yoo, G.; Heo, J. Ultrahigh deep-ultraviolet responsivity of a β-Ga2O3/MgO heterostructure-based phototransistor. ACS Photonics 2021, 8, 557–566.

41

Wu, D.; Guo, J. W.; Wang, C. Q.; Ren, X. Y.; Chen, Y. S.; Lin, P.; Zeng, L. H.; Shi, Z. F.; Li, X. J.; Shan, C. X. et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano 2021, 15, 10119–10129.

42

Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907–9917.

43

Wu, D. ; Xu, M. M. ; Zeng, L. H. ; Shi, Z. F. ; Tian, Y. Z. ; Li, X. J. ; Shan, C. X. ; Jie, J. S. In situ fabrication of PdSe2/GaN Schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio. ACS Nano 2022, 16, 5545–5555.

44

Wang, S. S.; Wang, X. C.; Warner, J. H. All chemical vapor deposition growth of MoS2: h-BN vertical van der Waals heterostructures. ACS Nano 2015, 9, 5246–5254.

45

Zhang, G. W.; Huang, S. Y.; Wang, F. J.; Xing, Q. X.; Song, C. Y.; Wang, C.; Lei, Y. C.; Huang, M. Y.; Yan, H. G. The optical conductivity of few-layer black phosphorus by infrared spectroscopy. Nat. Commun. 2020, 11, 1847.

46

Liao, Y. K.; Zhang, Z. F.; Gao, Z. B.; Qian, Q. K.; Hua, M. Y. Tunable properties of novel Ga2O3 monolayer for electronic and optoelectronic applications. ACS Appl. Mater. Interfaces 2020, 12, 30659–30669.

47

Zhu, L. Q.; Wan, C. J.; Guo, L. Q.; Shi, Y.; Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 2014, 5, 3158.

48

Wang, J. X.; Chen, Y.; Kong, L. A.; Fu, Y.; Gao, Y. L.; Sun, J. Deep-ultraviolet-triggered neuromorphic functions in In-Zn-O phototransistors. Appl. Phys. Lett. 2018, 113, 151101.

49

Chen, Y.; Qiu, W. J.; Wang, X. W.; Liu, W. R.; Wang, J. X.; Dai, G. Z.; Yuan, Y. B.; Gao, Y. L.; Sun, J. Solar-blind SnO2 nanowire photo-synapses for associative learning and coincidence detection. Nano Energy 2019, 62, 393–400.

50

Sun, J.; Oh, S.; Choi, Y.; Seo, S.; Oh, M. J.; Lee, M.; Lee, W. B.; Yoo, P. J.; Cho, J. H.; Park, J. H. Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Adv. Funct. Mater. 2018, 28, 1804397.

51

Kwon, S. M.; Cho, S. W.; Kim, M.; Heo, J. S.; Kim, Y. H.; Park, S. K. Environmental-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array. Adv. Mater. 2019, 31, 1906433.

52

Jin, C. X.; Liu, W. R.; Xu, Y. C.; Huang, Y. L.; Nie, Y. L.; Shi, X. F.; Zhang, G. M.; He, P.; Zhang, J.; Cao, H. T. et al. Artificial vision adaption mimicked by an optoelectrical In2O3 transistor array. Nano Lett. 2022, 22, 3372–3379.

53

Jeon, S.; Ahn, S. E.; Song, I.; Kim, C. J.; Chung, U. I.; Lee, E.; Yoo, I.; Nathan, A.; Lee, S.; Ghaffarzadeh, K. et al. Gated Three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nat. Mater. 2012, 11, 301–305.

54

Zhang, B. C.; Shan, S. G.; Chen, X. L.; Gao, W. Histogram of Gabor phase patterns (HGPP): A novel object representation approach for face recognition. IEEE Trans. Image Process. 2007, 16, 57–68.

Nano Research
Pages 9359-9367
Cite this article:
Li X-X, Zeng G, Li Y-C, et al. Highly sensitive and stable β-Ga2O3 DUV phototransistor with local back-gate structure and its neuromorphic application. Nano Research, 2022, 15(10): 9359-9367. https://doi.org/10.1007/s12274-022-4574-1
Topics:
Metrics & Citations  
Article History
Copyright
Return