AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse products

Shengxian Shao1,2,§Chengqian Cui1,2,§Zhiyong Tang1,2Guodong Li1,2( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

§ Shengxian Shao and Chengqian Cui contributed equally to this work.

Show Author Information

Graphical Abstract

With the well-defined reticular frameworks and flexible modifiability, metal-organic frameworks (MOFs) can be the ideal platform to construct the enabled catalysts for CO2 hydrogenation with the enhancement of catalytic activity and precise control of selectivity. In this review, we systematically summarize the recent advances on MOFs based catalysts for selective CO2 hydrogenation towards diverse products.

Abstract

Selective hydrogenation of CO2 to high value-added chemicals, not only gives an effective way to reduce the concentration of CO2, but also provides the precursors to advance the industrial manufacturing of chemicals and fuels. With the well-defined reticular frameworks and flexible modifiability, metal-organic frameworks (MOFs) can be the ideal platform to construct the enabled catalysts for CO2 hydrogenation, because they have shown the great potential for the enhancement of catalytic activity, the precise control of selectivity, and the excellent stability. In this review, we systematically summarize the recent advances in MOFs based catalysts for CO2 hydrogenation towards diverse products. Firstly, synthesis strategies for different kinds of MOFs based catalysts are described. Secondly, selective hydrogenation of CO2 towards CO and methane is discussed over various metal nanoparticles/MOFs composites. Thirdly, heterogenization and isolation of molecular catalysts by MOFs are elaborated for producing formic acid. Fourthly, selective hydrogenation of CO2 toward methanol is discussed in terms of interface structures of Cu, Zn, and metal nodes of MOFs, the synergy between auxiliary sites and noble metal, and tandem catalytic systems of molecular catalysts and Lewis acid sites. Subsequently, the integration of multiple metal sites, promoters, and cocatalysts into MOFs is described for the selective hydrogenation of CO2 to C2+ products. After those, the key issue about the stability of MOFs based catalysts for CO2 hydrogenation reaction is discussed. Finally, the summary and perspective about MOFs based catalysts for selective CO2 hydrogenation and mechanism research are proposed.

References

[1]

Navarro-Jaén, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A. Y. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 2021, 5, 564–579.

[2]

Gao, W. L.; Liang, S. Y.; Wang, R. J.; Jiang, Q.; Zhang, Y.; Zheng, Q. W.; Xie, B. Q.; Toe, C. Y.; Zhu, X. C.; Wang, J. Y. et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges. Chem. Soc. Rev. 2020, 49, 8584–8686.

[3]

Bhanja, P.; Modak, A.; Bhaumik, A. Supported porous nanomaterials as efficient heterogeneous catalysts for CO2 fixation reactions. Chem. Eur. J. 2018, 24, 7278–7297.

[4]

Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 17045.

[5]

Do, T. N.; You, C.; Kim, J. A CO2 utilization framework for liquid fuels and chemical production: Techno-economic and environmental analysis. Energy Environ. Sci. 2022, 15, 169–184.

[6]

Rogelj, J.; Huppmann, D.; Krey, V.; Riahi, K.; Clarke, L.; Gidden, M.; Nicholls, Z.; Meinshausen, M. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 2019, 573, 357–363.

[7]

Schleussner, C. F.; Rogelj, J.; Schaeffer, M.; Lissner, T.; Licker, R.; Fischer, E. M.; Knutti, R.; Levermann, A.; Frieler, K.; Hare, W. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change 2016, 6, 827–835.

[8]

Bhanja, P.; Modak, A.; Bhaumik, A. Porous organic polymers for CO2 storage and conversion reactions. ChemCatChem 2019, 11, 244–257.

[9]

D'Alessandro, D. M.; Smit, B.; Long, J. R. Carbon dioxide capture: Prospects for new materials. Angew. Chem., Int. Ed. 2010, 49, 6058–6082.

[10]

Wei, J.; Yao, R. W.; Han, Y.; Ge, Q. J.; Sun, J. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chem. Soc. Rev. 2021, 50, 10764–10805.

[11]

Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem. Rev. 2014, 114, 1709–1742.

[12]

Long, C.; Wan, K. W.; Qiu, X. Y.; Zhang, X. F.; Han, J. Y.; An, P. F.; Yang, Z. J.; Li, X.; Guo, J.; Shi, X. H. et al. Single site catalyst with enzyme-mimic micro-environment for electroreduction of CO2. Nano Res. 2022, 15, 1817–1823.

[13]

Parkinson, B.; Balcombe, P.; Speirs, J. F.; Hawkes, A. D.; Hellgardt, K. Levelized cost of CO2 mitigation from hydrogen production routes. Energy Environ. Sci. 2019, 12, 19–40.

[14]

Bai, S. T.; De Smet, G.; Liao, Y. H.; Sun, R. Y.; Zhou, C.; Beller, M.; Maes, B. U. W.; Sels, B. F. Homogeneous and heterogeneous catalysts for hydrogenation of CO2 to methanol under mild conditions. Chem. Soc. Rev. 2021, 50, 4259–4298.

[15]

Li, Q.; Liu, K. S.; Gui, S. W.; Wu, J. B.; Li, X. G.; Li, Z. F.; Jin, H. R.; Yang, H.; Hu, Z. M.; Liang, W. X. et al. Cobalt doping boosted electrocatalytic activity of CaMn3O6 for hydrogen evolution reaction. Nano Res. 2022, 15, 2870–2876.

[16]

Wu, J. B.; Li, Q.; Shuck, C. E.; Maleski, K.; Alshareef, H. N.; Zhou, J.; Gogotsi, Y.; Huang, L. An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Res. 2022, 15, 535–541.

[17]

Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Review on methanation-from fundamentals to current projects. Fuel 2016, 166, 276–296.

[18]

Hou, S. L.; Dong, J.; Zhao, B. Formation of C–X bonds in CO2 chemical fixation catalyzed by metal-organic frameworks. Adv. Mater. 2020, 32, 1806163.

[19]

Liu, Q.; Wu, L. P.; Jackstell, R.; Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 2015, 6, 5933.

[20]

Sakakura, T.; Choi, J. C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 2007, 107, 2365–2387.

[21]

Wang, H. Q. Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022, 15, 2834–2854.

[22]

Wang, L. X.; Wang, L.; Xiao, F. S. Tuning product selectivity in CO2 hydrogenation over metal-based catalysts. Chem. Sci. 2021, 12, 14660–14673.

[23]

Kattel, S.; Liu, P.; Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 2017, 139, 9739–9754.

[24]

Have, I. C. T.; Kromwijk, J. J. G.; Monai, M.; Ferri, D.; Sterk, E. B.; Meirer, F.; Weckhuysen, B. M. Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation. Nat. Commun. 2022, 13, 324.

[25]

Yao, B. Z.; Xiao, T. C.; Makgae, O. A.; Jie, X. Y.; Gonzalez-Cortes, S.; Guan, S. L.; Kirkland, A. I.; Dilworth, J. R.; Al-Megren, H. A.; Alshihri, S. M. et al. Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst. Nat. Commun. 2020, 11, 6395.

[26]

Asare Bediako, B. B.; Qian, Q. L.; Han, B. X. Synthesis of C2+ chemicals from CO2 and H2 via C–C bond formation. Acc. Chem. Res. 2021, 54, 2467–2476.

[27]

An, B.; Li, Z.; Song, Y.; Zhang, J. Z.; Zeng, L. Z.; Wang, C.; Lin, W. B. Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2019, 2, 709–717.

[28]

Xu, D.; Wang, Y. Q.; Ding, M. Y.; Hong, X. L.; Liu, G. L.; Tsang, S. C. E. Advances in higher alcohol synthesis from CO2 hydrogenation. Chem 2021, 7, 849–881.

[29]

Fan, T.; Liu, H. L.; Shao, S. X.; Gong, Y. J.; Li, G. D.; Tang, Z. Y. Cobalt catalysts enable selective hydrogenation of CO2 toward diverse products: Recent progress and perspective. J. Phys. Chem. Lett. 2021, 12, 10486–10496.

[30]

Liu, H. L.; Yin, L. L.; Chen, X. F.; Li, G. D. Recent advances in indium oxide based nanocatalysts for selective hydrogenation of CO2. Chem. J. Chin. Univ. 2021, 42, 1430–1445.

[31]

Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

[32]

Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal-organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

[33]

Guo, J.; Qin, Y. T.; Zhu, Y. F.; Zhang, X. F.; Long, C.; Zhao, M. T.; Tang, Z. Y. Metal-organic frameworks as catalytic selectivity regulators for organic transformations. Chem. Soc. Rev. 2021, 50, 5366–5396.

[34]

Zhang, X. F.; Chang, L.; Yang, Z. J.; Shi, Y. N.; Long, C.; Han, J. Y.; Zhang, B. H.; Qiu, X. Y.; Li, G. D.; Tang, Z. Y. Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis. Nano Res. 2019, 12, 437–440.

[35]

Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2021, 14, 2037–2052.

[36]

Hu, X. J.; Li, Z. X.; Xue, H.; Huang, X. S.; Cao, R.; Liu, T. F. Designing a bifunctional Brønsted acid-base heterogeneous catalyst through precise installation of ligands on metal-organic frameworks. CCS Chem. 2020, 2, 616–622.

[37]

He, C.; Liang, J.; Zou, Y. H.; Yi, J. D.; Huang, Y. B.; Cao, R. Metal-organic frameworks bonded with metal N-heterocyclic carbenes for efficient catalysis. Natl. Sci. Rev. 2021, nwab157.

[38]

Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828.

[39]

Liang, J.; Wu, Q.; Huang, Y. B.; Cao, R. Reticular frameworks and their derived materials for CO2 conversion by thermo-catalysis. EnergyChem 2021, 3, 100064.

[40]

Gutterød, E. S.; Lazzarini, A.; Fjermestad, T.; Kaur, G.; Manzoli, M.; Bordiga, S.; Svelle, S.; Lillerud, K. P.; Skúlason, E.; Øien-Ødegaard, S. et al. Hydrogenation of CO2 to methanol by Pt nanoparticles encapsulated in UiO-67: Deciphering the role of the metal-organic framework. J. Am. Chem. Soc. 2020, 142, 999–1009.

[41]

Gutterød, E. S.; Pulumati, S. H.; Kaur, G.; Lazzarini, A.; Solemsli, B. G.; Gunnæs, A. E.; Ahoba-Sam, C.; Kalyva, M. E.; Sannes, J. A.; Svelle, S. et al. Influence of defects and H2O on the hydrogenation of CO2 to methanol over Pt nanoparticles in UiO-67 metal-organic framework. J. Am. Chem. Soc. 2020, 142, 17105–17118.

[42]

Fan, Y.; Zhang, J.; Shen, Y.; Zheng, B.; Zhang, W. N.; Huo, F. W. Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Res. 2021, 14, 1–28.

[43]

Li, G. D.; Zhao, S. L.; Zhang, Y.; Tang, Z. Y. Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: Recent progress and perspectives. Adv. Mater. 2018, 30, 1800702.

[44]

Liu, W. X.; Huang, J. J.; Yang, Q.; Wang, S. J.; Sun, X. M.; Zhang, W. N.; Liu, J. F.; Huo, F. W. Multi-shelled hollow metal-organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 5512–5516.

[45]

Xu, Z. L.; Zhang, W. N.; Weng, J. N.; Huang, W.; Tian, D. B.; Huo, F. W. Encapsulation of metal layers within metal-organic frameworks as hybrid thin films for selective catalysis. Nano Res. 2016, 9, 158–164.

[46]

Choe, K.; Zheng, F. B.; Wang, H.; Yuan, Y.; Zhao, W. S.; Xue, G. X.; Qiu, X. Y.; Ri, M.; Shi, X. H.; Wang, Y. L. et al. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 3650–3657.

[47]

Zhu, Y. F.; Qiu, X. Y.; Zhao, S. L.; Guo, J.; Zhang, X. F.; Zhao, W. S.; Shi, Y. N.; Tang, Z. Y. Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Res. 2020, 13, 1928–1932.

[48]

Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

[49]

Howarth, A. J.; Liu, Y. Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.

[50]

Healy, C.; Patil, K. M.; Wilson, B. H.; Hermanspahn, L.; Harvey-Reid, N. C.; Howard, B. I.; Kleinjan, C.; Kolien, J.; Payet, F.; Telfer, S. G. et al. The thermal stability of metal-organic frameworks. Coord. Chem. Rev. 2020, 419, 213388.

[51]

Ding, M. L.; Cai, X. C.; Jiang, H. L. Improving MOF stability: Approaches and applications. Chem. Sci. 2019, 10, 10209–10230.

[52]

Zhen, W. L.; Li, B.; Lu, G. X.; Ma, J. T. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion. Chem. Commun. 2015, 51, 1728–1731.

[53]

Van, N. T. T.; Loc, L. C.; Tri, N.; Cuong, H. T. Synthesis, characterisation, adsorption ability and activity of Cu, ZnO@UiO-66 in methanol synthesis. Int. J. Nanotechnol. 2015, 12, 405–415.

[54]

Ye, J. Y.; Johnson, J. K. Screening Lewis pair moieties for catalytic hydrogenation of CO2 in functionalized UiO-66. ACS Catal. 2015, 5, 6219–6229.

[55]

Din, I. U.; Usman, M.; Khan, S.; Helal, A.; Alotaibi, M. A.; Alharthi, A. I.; Centi, G. Prospects for a green methanol thermo-catalytic process from CO2 by using MOFs based materials: A mini-review. J. CO2 Util. 2021, 43, 101361.

[56]

Modak, A.; Ghosh, A.; Bhaumik, A.; Chowdhury, B. CO2 hydrogenation over functional nanoporous polymers and metal-organic frameworks. Adv. Colloid Interface Sci. 2021, 290, 102349.

[57]

Shi, Y.; Hou, S. L.; Qiu, X. H.; Zhao, B. MOFs-based catalysts supported chemical conversion of CO2. Top. Curr. Chem. 2020, 378, 11.

[58]

Zhang, J. Z.; An, B.; Li, Z.; Cao, Y. H.; Dai, Y. H.; Wang, W. Y.; Zeng, L. Z.; Lin, W. B.; Wang, C. Neighboring Zn-Zr sites in a metal-organic framework for CO2 hydrogenation. J. Am. Chem. Soc. 2021, 143, 8829–8837.

[59]

Chen, Y. Z.; Li, H. L.; Zhao, W. H.; Zhang, W. B.; Li, J. W.; Li, W.; Zheng, X. S.; Yan, W. S.; Zhang, W. H.; Zhu, J. F. et al. Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity. Nat. Commun. 2019, 10, 1885.

[60]

Zeng, L. Z.; Cao, Y. H.; Li, Z.; Dai, Y. H.; Wang, Y. K.; An, B.; Zhang, J. Z.; Li, H.; Zhou, Y.; Lin, W. B. et al. Multiple cuprous centers supported on a titanium-based metal-organic framework catalyze CO2 hydrogenation to ethylene. ACS Catal. 2021, 11, 11696–11705.

[61]

An, B.; Zhang, J. Z.; Cheng, K.; Ji, P. F.; Wang, C.; Lin, W. B. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J. Am. Chem. Soc. 2017, 139, 3834–3840.

[62]

Wang, S. P.; Hou, S. H.; Wu, C.; Zhao, Y. J.; Ma, X. B. RuCl3 anchored onto post-synthetic modification MIL-101(Cr)-NH2 as heterogeneous catalyst for hydrogenation of CO2 to formic acid. Chin. Chem. Lett. 2019, 30, 398–402.

[63]

Pan, X. B.; Xu, H. T.; Zhao, X.; Zhang, H. Q. Metal-organic framework-membranized bicomponent core–shell catalyst HZSM-5@UiO-66-NH2/Pd for CO2 selective conversion. ACS Sustainable Chem. Eng. 2020, 8, 1087–1094.

[64]

Xu, H. T.; Li, Y. S.; Luo, X. K.; Xu, Z. L.; Ge, J. P. Monodispersed gold nanoparticles supported on a zirconium-based porous metal-organic framework and their high catalytic ability for the reverse water–gas shift reaction. Chem. Commun. 2017, 53, 7953–7956.

[65]

Rungtaweevoranit, B.; Baek, J.; Araujo, J. R.; Archanjo, B. S.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett. 2016, 16, 7645–7649.

[66]

Han, Y. Q.; Xu, H. T.; Su, Y. Q.; Xu, Z. L.; Wang, K. F.; Wang, W. Z. Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. J. Catal. 2019, 370, 70–78.

[67]

Zhen, W. L.; Gao, F.; Tian, B.; Ding, P.; Deng, Y. B.; Li, Z.; Gao, H. B.; Lu, G. X. Enhancing activity for carbon dioxide methanation by encapsulating (1 1 1) facet Ni particle in metal-organic frameworks at low temperature. J. Catal. 2017, 348, 200–211.

[68]

Morabito, J. V.; Chou, L. Y.; Li, Z. H.; Manna, C. M.; Petroff, C. A.; Kyada, R. J.; Palomba, J. M.; Byers, J. A.; Tsung, C. K. Molecular encapsulation beyond the aperture size limit through dissociative linker exchange in metal-organic framework crystals. J. Am. Chem. Soc. 2014, 136, 12540–12543.

[69]

Li, Z. H.; Rayder, T. M.; Luo, L. S.; Byers, J. A.; Tsung, C. K. Aperture-opening encapsulation of a transition metal catalyst in a metal-organic framework for CO2 hydrogenation. J. Am. Chem. Soc. 2018, 140, 8082–8085.

[70]

Shen, Y. J.; Zheng, Q. S.; Chen, Z. N.; Wen, D. H.; Clark, J. H.; Xu, X.; Tu, T. Highly efficient and selective N-formylation of amines with CO2 and H2 catalyzed by porous organometallic polymers. Angew. Chem., Int. Ed. 2021, 60, 4125–4132.

[71]

Zeng, F.; Mebrahtu, C.; Xi, X. Y.; Liao, L. F.; Ren, J.; Xie, J. X.; Heeres, H. J.; Palkovits, R. Catalysts design for higher alcohols synthesis by CO2 hydrogenation: Trends and future perspectives. Appl. Catal. B: Environ. 2021, 291, 120073.

[72]

Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.

[73]

Zhao, Z. Y.; Wang, M. Z.; Ma, P. J.; Zheng, Y. P.; Chen, J. Y.; Li, H. Q.; Zhang, X. B.; Zheng, K.; Kuang, Q.; Xie, Z. X. Atomically dispersed Pt/CeO2 catalyst with superior CO selectivity in reverse water gas shift reaction. Appl. Catal. B: Environ. 2021, 291, 120101.

[74]

Chen, X. D.; Su, X.; Duan, H. M.; Liang, B. L.; Huang, Y. Q.; Zhang, T. Catalytic performance of the Pt/TiO2 catalysts in reverse water gas shift reaction: Controlled product selectivity and a mechanism study. Catal. Today 2017, 281, 312–318.

[75]

Kattel, S.; Yan, B. H.; Chen, J. G.; Liu, P. CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support. J. Catal. 2016, 343, 115–126.

[76]

Wang, X.; Shi, H.; Szanyi, J. Controlling selectivities in CO2 reduction through mechanistic understanding. Nat. Commun. 2017, 8, 513.

[77]

Wang, L. C.; Khazaneh, M. T.; Widmann, D.; Behm, R. J. TAP reactor studies of the oxidizing capability of CO2 on a Au/CeO2 catalyst—A first step toward identifying a redox mechanism in the reverse water–gas shift reaction. J. Catal. 2013, 302, 20–30.

[78]

Zhu, Y. F.; Yuk, S. F.; Zheng, J.; Nguyen, M. T.; Lee, M. S.; Szanyi, J.; Kovarik, L.; Zhu, Z. H.; Balasubramanian, M.; Glezakou, V. A. et al. Environment of metal–O–Fe bonds enabling high activity in CO2 reduction on single metal atoms and on supported nanoparticles. J. Am. Chem. Soc. 2021, 143, 5540–5549.

[79]

Gu, M. W.; Dai, S.; Qiu, R. F.; Ford, M. E.; Cao, C. X.; Wachs, I. E.; Zhu, M. H. Structure–activity relationships of copper- and potassium-modified iron oxide catalysts during reverse water–gas shift reaction. ACS Catal. 2021, 11, 12609–12619.

[80]

Wang, Y. N.; Winter, L. R.; Chen, J. G.; Yan, B. H. CO2 hydrogenation over heterogeneous catalysts at atmospheric pressure: From electronic properties to product selectivity. Green Chem. 2021, 23, 249–267.

[81]

Yi, J. D.; Si, D. H.; Xie, R. K.; Yin, Q.; Zhang, M. D.; Wu, Q.; Chai, G. L.; Huang, Y. B.; Cao, R. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2021, 60, 17108–17114.

[82]

Gutterød, E. S.; Øien-Ødegaard, S.; Bossers, K.; Nieuwelink, A. E.; Manzoli, M.; Braglia, L.; Lazzarini, A.; Borfecchia, E.; Ahmadigoltapeh, S.; Bouchevreau, B. et al. CO2 hydrogenation over Pt-containing UiO-67 Zr-MOFs—The base case. Ind. Eng. Chem. Res. 2017, 56, 13206–13218.

[83]

Wu, Y.; Lan, D. P.; Liu, J. C.; Ge, J. P.; Xu, H. T.; Han, Y. Q.; Zhang, H. Q.; Pan, X. B.; Xu, Z. L.; Liu, J. K. UiO66-membranized SAPO-34 Pt catalyst for enhanced carbon dioxide conversion efficiency. Mater. Today 2021, 21, 100781.

[84]

Zhao, X.; Xu, H. T.; Wang, X. X.; Zheng, Z. Z.; Xu, Z. L.; Ge, J. P. Monodisperse metal-organic framework nanospheres with encapsulated core–shell nanoparticles Pt/Au@Pd@{Co2(oba)4(3-bpdh)2}4H2O for the highly selective conversion of CO2 to CO. ACS Appl. Mater. Interfaces 2018, 10, 15096–15103.

[85]

Caballero, A.; Pérez, P. J. Methane as raw material in synthetic chemistry: The final frontier. Chem. Soc. Rev. 2013, 42, 8809–8820.

[86]

Parastaev, A.; Muravev, V.; Osta, E. H.; Van Hoof, A. J. F.; Kimpel, T. F.; Kosinov, N.; Hensen, E. J. M. Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts. Nat. Catal. 2020, 3, 526–533.

[87]

Zhou, J.; Gao, Z.; Xiang, G. L.; Zhai, T. Y.; Liu, Z. K.; Zhao, W. X.; Liang, X.; Wang, L. Y. Interfacial compatibility critically controls Ru/TiO2 metal–support interaction modes in CO2 hydrogenation. Nat. Commun. 2022, 13, 327.

[88]

Vogt, C.; Groeneveld, E.; Kamsma, G.; Nachtegaal, M.; Lu, L.; Kiely, C. J.; Berben, P. H.; Meirer, F.; Weckhuysen, B. M. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 2018, 1, 127–134.

[89]

Beuls, A.; Swalus, C.; Jacquemin, M.; Heyen, G.; Karelovic, A.; Ruiz, P. Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst. Appl. Catal. B: Environ. 2012, 113–114, 2–10.

[90]

Cui, X. J.; Shyshkanov, S.; Nguyen, T. N.; Chidambaram, A.; Fei, Z. F.; Stylianou, K. C.; Dyson, P. J. CO2 methanation via amino alcohol relay molecules employing a ruthenium nanoparticle/metal organic framework catalyst. Angew. Chem., Int. Ed. 2020, 59, 16371–16375.

[91]

Li, J.; Huang, H. L.; Xue, W. J.; Sun, K.; Song, X. H.; Wu, C. R.; Nie, L.; Li, Y.; Liu, C. Y.; Pan, Y. et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729.

[92]

Zhao, Z. W.; Zhou, X.; Liu, Y. N.; Shen, C. C.; Yuan, C. Z.; Jiang, Y. F.; Zhao, S. J.; Ma, L. B.; Cheang, T. Y.; Xu, A. W. Ultrasmall Ni nanoparticles embedded in Zr-based MOFs provide high selectivity for CO2 hydrogenation to methane at low temperatures. Catal. Sci. Technol. 2018, 8, 3160–3165.

[93]

Zurrer, T.; Wong, K.; Horlyck, J.; Lovell, E. C.; Wright, J.; Bedford, N. M.; Han, Z. J.; Liang, K.; Scott, J.; Amal, R. Mixed-metal MOF-74 templated catalysts for efficient carbon dioxide capture and methanation. Adv. Funct. Mater. 2021, 31, 2007624.

[94]

Xu, W. W.; Zhang, X. L.; Dong, M. Y.; Zhao, J.; Di, L. B. Plasma-assisted Ru/Zr-MOF catalyst for hydrogenation of CO2 to methane. Plasma Sci. Technol. 2019, 21, 044004.

[95]

Xu, W. W.; Dong, M. Y.; Di, L. B.; Zhang, X. L. A facile method for preparing UiO-66 encapsulated Ru catalyst and its application in plasma-assisted CO2 methanation. Nanomaterials (Basel) 2019, 9, 1432.

[96]

Li, Y. Q.; Zhao, J.; Bu, D. C.; Zhang, X. L.; Peng, T.; Di, L. B.; Zhang, X. L. Plasma-assisted Co/Zr-metal organic framework catalysis of CO2 hydrogenation: Influence of Co precursors. Plasma Sci. Technol. 2021, 23, 055503.

[97]

Fan, L. P.; Zhang, J.; Ma, K. X.; Zhang, Y. S.; Hu, Y. M.; Kong, L. C.; Jia, A. P.; Zhang, Z. H.; Huang, W. X.; Lu, J. Q. Ceria morphology-dependent Pd–CeO2 interaction and catalysis in CO2 hydrogenation into formate. J. Catal. 2021, 397, 116–127.

[98]
Yang, G. X.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. Ru complex and N, P-containing polymers confined within mesoporous hollow carbon spheres for hydrogenation of CO2 to formate. Nano Res., in press, https://doi.org/10.1007/s12274-021-3792-2.
[99]

Mori, K.; Taga, T.; Yamashita, H. Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO2 to formic acid. ACS Catal. 2017, 7, 3147–3151.

[100]

Yoshio, I.; Hitoshi, I.; Yoshiyuki, S.; Harukichi, H. Catalytic fixation of carbon dioxide to formic acid by transition-metal complexes under mild conditions. Chem. Lett. 1976, 5, 863–864.

[101]

Filonenko, G. A.; Van Putten, R.; Schulpen, E. N.; Hensen, E. J. M.; Pidko, E. A. Highly efficient reversible hydrogenation of carbon dioxide to formates using a ruthenium PNP-pincer catalyst. ChemCatChem 2014, 6, 1526–1530.

[102]

Sordakis, K.; Tang, C. H.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols. Chem. Rev. 2018, 118, 372–433.

[103]

Schmeier, T. J.; Dobereiner, G. E.; Crabtree, R. H.; Hazari, N. Secondary coordination sphere interactions facilitate the insertion step in an iridium(III) CO2 reduction catalyst. J. Am. Chem. Soc. 2011, 133, 9274–9277.

[104]

Malaza, S. S. P.; Makhubela, B. C. E. Direct and indirect CO2 hydrogenation catalyzed by Ir(III), Rh(III), Ru(II), and Os(II) half-sandwich complexes to generate formates and N,N-diethylformamide. J. CO2 Util. 2020, 39, 101149.

[105]

Yang, G. X.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. PdAg alloy nanoparticles encapsulated in N-doped microporous hollow carbon spheres for hydrogenation of CO2 to formate. Appl. Catal. B: Environ. 2021, 283, 119628.

[106]

Mori, K.; Sano, T.; Kobayashi, H.; Yamashita, H. Surface engineering of a supported PdAg catalyst for hydrogenation of CO2 to formic acid: Elucidating the active Pd atoms in alloy nanoparticles. J. Am. Chem. Soc. 2018, 140, 8902–8909.

[107]

Nascimento, D. L.; Foscato, M.; Occhipinti, G.; Jensen, V. R.; Fogg, D. E. Bimolecular coupling in olefin metathesis: Correlating structure and decomposition for leading and emerging ruthenium-carbene catalysts. J. Am. Chem. Soc. 2021, 143, 11072–11079.

[108]

Azua, A.; Sanz, S.; Peris, E. Water-soluble IrIII N-heterocyclic carbene based catalysts for the reduction of CO2 to formate by transfer hydrogenation and the deuteration of aryl amines in water. Chem. Eur. J. 2011, 17, 3963–3967.

[109]

Shao, X. Z.; Yang, X. F.; Xu, J. M.; Liu, S.; Miao, S.; Liu, X. Y.; Su, X.; Duan, H. M.; Huang, Y. Q.; Zhang, T. Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate. Chem 2019, 5, 693–705.

[110]

Tshuma, P.; Makhubela, B. C. E.; Bingwa, N.; Mehlana, G. Palladium(II) immobilized on metal-organic frameworks for catalytic conversion of carbon dioxide to formate. Inorg. Chem. 2020, 59, 6717–6728.

[111]

An, B.; Zeng, L. Z.; Jia, M.; Li, Z.; Lin, Z. K.; Song, Y.; Zhou, Y.; Cheng, J.; Wang, C.; Lin, W. B. Molecular iridium complexes in metal-organic frameworks catalyze CO2 hydrogenation via concerted proton and hydride transfer. J. Am. Chem. Soc. 2017, 139, 17747–17750.

[112]

Wu, C.; Irshad, F.; Luo, M. W.; Zhao, Y. J.; Ma, X. B.; Wang, S. P. Ruthenium complexes immobilized on an azolium based metal organic framework for highly efficient conversion of CO2 into formic acid. ChemCatChem 2019, 11, 1256–1263.

[113]

Olah, G. A. Beyond oil and gas: The methanol economy. Angew. Chem., Int. Ed. 2005, 44, 2636–2639.

[114]

Zhong, J. W.; Yang, X. F.; Wu, Z. L.; Liang, B. L.; Huang, Y. Q.; Zhang, T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 2020, 49, 1385–1413.

[115]

Yue, W. Z.; Li, Y. H.; Wei, W.; Jiang, J. W.; Caro, J.; Huang, A. S. Highly selective CO2 conversion to methanol in a bifunctional zeolite catalytic membrane reactor. Angew. Chem., Int. Ed. 2021, 60, 18289–18294.

[116]

Docherty, S. R.; Phongprueksathat, N.; Lam, E.; Noh, G.; Safonova, O. V.; Urakawa, A.; Copéret, C. Silica-supported PdGa nanoparticles: Metal synergy for highly active and selective CO2-to-CH3OH hydrogenation. JACS Au 2021, 1, 450–458.

[117]

Tsoukalou, A.; Abdala, P. M.; Stoian, D.; Huang, X.; Willinger, M. G.; Fedorov, A.; Müller, C. R. Structural evolution and dynamics of an In2O3 catalyst for CO2 hydrogenation to methanol: An operando XAS-XRD and in situ TEM study. J. Am. Chem. Soc. 2019, 141, 13497–13505.

[118]

Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893–897.

[119]

Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 2017, 355, 1296–1299.

[120]

Li, H. Z.; Qiu, C. L.; Ren, S. J.; Dong, Q. B.; Zhang, S. X.; Zhou, F. L.; Liang, X. H.; Wang, J. G.; Li, S. G.; Yu, M. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels. Science 2020, 367, 667–671.

[121]

Zabilskiy, M.; Sushkevich, V. L.; Newton, M. A.; Krumeich, F.; Nachtegaal, M.; Van Bokhoven, J. A. Mechanistic study of carbon dioxide hydrogenation over Pd/ZnO-based catalysts: The role of palladium-zinc alloy in selective methanol synthesis. Angew. Chem., Int. Ed. 2021, 60, 17053–17059.

[122]

Cai, Z. J.; Dai, J. J.; Li, W.; Tan, K. B.; Huang, Z. L.; Zhan, G. W.; Huang, J. L.; Li, Q. B. Pd supported on MIL-68(In)-derived In2O3 nanotubes as superior catalysts to boost CO2 hydrogenation to methanol. ACS Catal. 2020, 10, 13275–13289.

[123]

Xu, J. H.; Su, X.; Liu, X. Y.; Pan, X. L.; Pei, G. X.; Huang, Y. Q.; Wang, X. D.; Zhang, T.; Geng, H. R. Methanol synthesis from CO2 and H2 over Pd/ZnO/Al2O3: Catalyst structure dependence of methanol selectivity. Appl. Catal. A: Gen 2016, 514, 51–59.

[124]

Abdel-Mageed, A. M.; Klyushin, A.; Knop-Gericke, A.; Schlögl, R.; Behm, R. J. Influence of CO on the activation, O-vacancy formation, and performance of Au/ZnO catalysts in CO2 hydrogenation to methanol. J. Phys. Chem. Lett. 2019, 10, 3645–3653.

[125]

Abdel-Mageed, A. M.; Klyushin, A.; Rezvani, A.; Knop-Gericke, A.; Schlögl, R.; Behm, R. J. Negative charging of Au nanoparticles during methanol synthesis from CO2/H2 on a Au/ZnO catalyst: Insights from operando IR and near-ambient-pressure XPS and XAS measurements. Angew. Chem., Int. Ed. 2019, 58, 10325–10329.

[126]

Zhu, Y. F.; Zheng, J.; Ye, J. Y.; Cui, Y. R.; Koh, K.; Kovarik, L.; Camaioni, D. M.; Fulton, J. L.; Truhlar, D. G.; Neurock, M. et al. Copper–zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO2 to methanol. Nat. Commun. 2020, 11, 5849.

[127]

Mitsuka, Y.; Ogiwara, N.; Mukoyoshi, M.; Kitagawa, H.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Haneda, M.; Kawaguchi, S.; Kubota, Y. et al. Fabrication of integrated copper-based nanoparticles/amorphous metal-organic framework by a facile spray-drying method: Highly enhanced CO2 hydrogenation activity for methanol synthesis. Angew. Chem., Int. Ed. 2021, 60, 22283–22288.

[128]

Wang, J. J.; Li, G. N.; Li, Z. L.; Tang, C. Z.; Feng, Z. C.; An, H. Y.; Liu, H. L.; Liu, T. F.; Li, C. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci. Adv. 2017, 3, e1701290.

[129]

Temvuttirojn, C.; Poo-Arporn, Y.; Chanlek, N.; Cheng, C. K.; Chong, C. C.; Limtrakul, J.; Witoon, T. Role of calcination temperatures of ZrO2 support on methanol synthesis from CO2 hydrogenation at high reaction temperatures over ZnOx/ZrO2 catalysts. Ind. Eng. Chem. Res. 2020, 59, 5525–5535.

[130]

Zhou, C.; Shi, J. Q.; Zhou, W.; Cheng, K.; Zhang, Q. H.; Kang, J. C.; Wang, Y. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide. ACS Catal. 2020, 10, 302–310.

[131]

Zhang, J. Z.; An, B.; Cao, Y. H.; Li, Z.; Chen, J. W.; He, X. F.; Wang, C. ZnO supported on a Zr-based metal-organic framework for selective CO2 hydrogenation to methanol. ACS Appl. Energy Mater. 2021, 4, 13567–13574.

[132]

Stolar, T.; Prašnikar, A.; Martinez, V.; Karadeniz, B.; Bjelić, A.; Mali, G.; Friščić, T.; Likozar, B.; Užarević, K. Scalable mechanochemical smorphization of bimetallic Cu-Zn MOF-74 catalyst for selective CO2 reduction reaction to methanol. ACS Appl. Mater. Interfaces 2021, 13, 3070–3077.

[133]

Yang, Y.; Xu, Y. N.; Ding, H.; Yang, D.; Cheng, E. P.; Hao, Y. M.; Wang, H. T.; Hong, Y. Z.; Su, Y. Z.; Wang, Y. L. et al. Cu/ZnOx@UiO-66 synthesized from a double solvent method as an efficient catalyst for CO2 hydrogenation to methanol. Catal. Sci. Technol. 2021, 11, 4367–4375.

[134]

Chen, W. Y.; Cao, J. B.; Fu, W. Z.; Zhang, J.; Qian, G.; Yang, J.; Chen, D.; Zhou, X. G.; Yuan, W. K.; Duan, X. Z. Molecular-level insights into the notorious CO poisoning of platinum catalyst. Angew. Chem., Int. Ed. 2022, 61, e202200190.

[135]

Noh, G.; Lam, E.; Bregante, D. T.; Meyet, J.; Šot, P.; Flaherty, D. W.; Copéret, C. Lewis acid strength of interfacial metal sites drives CH3OH selectivity and formation rates on Cu-based CO2 hydrogenation catalysts. Angew. Chem., Int. Ed. 2021, 60, 9650–9659.

[136]

Wang, L. B.; Zhang, W. B.; Zheng, X. S.; Chen, Y. Z.; Wu, W. L.; Qiu, J. X.; Zhao, X. C.; Zhao, X.; Dai, Y. Z.; Zeng, J. Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nat. Energy 2017, 2, 869–876.

[137]

Peng, Y. H.; Wang, L. B.; Luo, Q. Q.; Cao, Y.; Dai, Y. Z.; Li, Z. L.; Li, H. L.; Zheng, X. S.; Yan, W. S.; Yang, J. L. et al. Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol. Chem 2018, 4, 613–625.

[138]

Zhang, W. B.; Wang, L. B.; Wang, K. W.; Khan, M. U.; Wang, M. L.; Li, H. L.; Zeng, J. Integration of photothermal effect and heat insulation to efficiently reduce reaction temperature of CO2 hydrogenation. Small 2017, 13, 1602583.

[139]

Cai, Z. J.; Huang, M.; Dai, J. J.; Zhan, G. W.; Sun, F. L.; Zhuang, G. L.; Wang, Y. Y.; Tian, P.; Chen, B.; Ullah, S. et al. Fabrication of Pd/In2O3 nanocatalysts derived from MIL-68(In) loaded with molecular metalloporphyrin (TCPP(Pd)) toward CO2 hydrogenation to methanol. ACS Catal. 2021, 12, 709–723.

[140]

Rodriguez, J. A.; Goodman, D. W. The nature of the metal–metal bond in bimetallic surfaces. Science 1992, 257, 897–903.

[141]

Bahruji, H.; Bowker, M.; Hutchings, G.; Dimitratos, N.; Wells, P.; Gibson, E.; Jones, W.; Brookes, C.; Morgan, D.; Lalev, G. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J. Catal. 2016, 343, 133–146.

[142]

Li, X. L.; Liu, G. L.; Xu, D.; Hong, X. L.; Tsang, S. C. E. Confinement of subnanometric PdZn at a defect enriched ZnO/ZIF-8 interface for efficient and selective CO2 hydrogenation to methanol. J. Mater. Chem. A 2019, 7, 23878–23885.

[143]

Huff, C. A.; Sanford, M. S. Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol. J. Am. Chem. Soc. 2011, 133, 18122–18125.

[144]

Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nat. Chem. 2011, 3, 609–614.

[145]

Wesselbaum, S.; Moha, V.; Meuresch, M.; Brosinski, S.; Thenert, K. M.; Kothe, J.; Stein, T. V.; Englert, U.; Hölscher, M.; Klankermayer, J. et al. Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium-triphos catalyst: From mechanistic investigations to multiphase catalysis. Chem. Sci. 2015, 6, 693–704.

[146]

Wesselbaum, S.; Vom Stein, T.; Klankermayer, J.; Leitner, W. Hydrogenation of carbon dioxide to methanol by using a homogeneous ruthenium-phosphine catalyst. Angew. Chem., Int. Ed. 2012, 51, 7499–7502.

[147]

Rayder, T. M.; Adillon, E. H.; Byers, J. A.; Tsung, C. K. A bioinspired multicomponent catalytic system for converting carbon dioxide into methanol autocatalytically. Chem 2020, 6, 1742–1754.

[148]

Rayder, T. M.; Bensalah, A. T.; Li, B. R.; Byers, J. A.; Tsung, C. K. Engineering second sphere interactions in a host–guest multicomponent catalyst system for the hydrogenation of carbon dioxide to methanol. J. Am. Chem. Soc. 2021, 143, 1630–1640.

[149]

Cui, M.; Qian, Q. L.; Zhang, J. J.; Wang, Y.; Asare Bediako, B. B.; Liu, H. Z.; Han, B. X. Liquid fuel synthesis via CO2 hydrogenation by coupling homogeneous and heterogeneous catalysis. Chem 2021, 7, 726–737.

[150]

Ding, L. P.; Shi, T. T.; Gu, J.; Cui, Y.; Zhang, Z. Y.; Yang, C. J.; Chen, T.; Lin, M.; Wang, P.; Xue, N. H. et al. CO2 hydrogenation to ethanol over Cu@Na-Beta. Chem 2020, 6, 2673–2689.

[151]

Wang, L. X.; Wang, L.; Zhang, J.; Liu, X. L.; Wang, H.; Zhang, W.; Yang, Q.; Ma, J. Y.; Dong, X.; Yoo, S. J. et al. Selective hydrogenation of CO2 to ethanol over cobalt catalysts. Angew. Chem., Int. Ed. 2018, 57, 6104–6108.

[152]

Xu, Y.; Zhai, P.; Deng, Y. C.; Xie, J. L.; Liu, X.; Wang, S.; Ma, D. Highly selective olefin production from CO2 hydrogenation on iron catalysts: A subtle synergy between manganese and sodium additives. Angew. Chem., Int. Ed. 2020, 59, 21736–21744.

[153]

Xu, D.; Ding, M. Y.; Hong, X. L.; Liu, G. L. Mechanistic aspects of the role of K promotion on Cu-Fe-based catalysts for higher alcohol synthesis from CO2 hydrogenation. ACS Catal. 2020, 10, 14516–14526.

[154]

Hu, S.; Liu, M.; Ding, F. S.; Song, C. S.; Zhang, G. L.; Guo, X. W. Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst to light olefins. J. CO2 Util. 2016, 15, 89–95.

[155]

Banerjee, D.; Kim, S. J.; Parise, J. B. Lithium based metal-organic framework with exceptional stability. Cryst. Growth Des. 2009, 9, 2500–2503.

[156]

Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.

[157]

Hall, J. N.; Bollini, P. Structure, characterization, and catalytic properties of open-metal sites in metal organic frameworks. React. Chem. Eng. 2019, 4, 207–222.

[158]

DeCoste, J. B.; Peterson, G. W.; Schindler, B. J.; Killops, K. L.; Browe, M. A.; Mahle, J. J. The effect of water adsorption on the structure of the carboxylate containing metal-organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. J. Mater. Chem. A 2013, 1, 11922–11932.

[159]

Qi, S. C.; Qian, X. Y.; He, Q. X.; Miao, K. J.; Jiang, Y.; Tan, P.; Liu, X. Q.; Sun, L. B. Generation of hierarchical porosity in metal-organic frameworks by the modulation of cation valence. Angew. Chem., Int. Ed. 2019, 58, 10104–10109.

[160]

Chen, W. Y.; Liu, X. M.; Han, B.; Liang, S. J.; Deng, H.; Lin, Z. Boosted photoreduction of diluted CO2 through oxygen vacancy engineering in NiO nanoplatelets. Nano Res. 2021, 14, 730–737.

[161]

Jiao, L.; Yang, W. J.; Wan, G.; Zhang, R.; Zheng, X. S.; Zhou, H.; Yu, S. H.; Jiang, H. L. Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem., Int. Ed. 2020, 59, 20589–20595.

[162]

Meng, D. L.; Zhang, M. D.; Si, D. H.; Mao, M. J.; Hou, Y.; Huang, Y. B.; Cao, R. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts. Angew. Chem., Int. Ed. 2021, 60, 25485–25492.

[163]

Wang, T. T.; Xu, M. T.; Jupp, A. R.; Qu, Z. W.; Grimme, S.; Stephan, D. W. Selective catalytic frustrated lewis pair hydrogenation of CO2 in the presence of silylhalides. Angew. Chem., Int. Ed. 2021, 60, 25771–25775.

[164]

Zhang, Y.; Lan, P. C.; Martin, K.; Ma, S. Q. Porous frustrated Lewis pair catalysts: Advances and perspective. Chem Catal. 2022, 2, 439–457.

[165]

Zhu, D. L.; Ao, S. S.; Deng, H. H.; Wang, M.; Qin, C. Q.; Zhang, J.; Jia, Y. R.; Ye, P.; Ni, H. G. Ordered coimmobilization of a multienzyme cascade system with a metal organic framework in a membrane: Reduction of CO2 to methanol. ACS Appl. Mater. Interfaces 2019, 11, 33581–33588.

[166]

Wang, L. X.; Guan, E. J.; Wang, Z. Q.; Wang, L.; Gong, Z. M.; Cui, Y.; Yang, Z. Y.; Wang, C. T.; Zhang, J.; Meng, X. J. et al. Dispersed nickel boosts catalysis by copper in CO2 hydrogenation. ACS Catal. 2020, 10, 9261–9270.

[167]

Zhang, X. B.; Han, S. B.; Zhu, B. E.; Zhang, G. H.; Li, X. Y.; Gao, Y.; Wu, Z. X.; Yang, B.; Liu, Y. F.; Baaziz, W. et al. Reversible loss of core–shell structure for Ni-Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 2020, 3, 411–417.

[168]

Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C. F.; Hummelshøj, J. S.; Dahl, S.; Chorkendorff, I.; Nørskov, J. K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 2014, 6, 320–324.

[169]

Khan, M. U.; Wang, L. B.; Liu, Z.; Gao, Z. H.; Wang, S. P.; Li, H. L.; Zhang, W. B.; Wang, M. L.; Wang, Z. F.; Ma, C. et al. Pt3Co octapods as superior catalysts of CO2 hydrogenation. Angew. Chem., Int. Ed. 2016, 55, 9548–9552.

[170]

Bai, S. X.; Shao, Q.; Feng, Y. G.; Bu, L. Z.; Huang, X. Q. Highly efficient carbon dioxide hydrogenation to methanol catalyzed by zigzag platinum-cobalt nanowires. Small 2017, 13, 1604311.

[171]

García-Trenco, A.; White, E. R.; Regoutz, A.; Payne, D. J.; Shaffer, M. S. P.; Williams, C. K. Pd2Ga-based colloids as highly active catalysts for the hydrogenation of CO2 to methanol. ACS Catal. 2017, 7, 1186–1196.

[172]

Beck, A.; Zabilskiy, M.; Newton, M. A.; Safonova, O.; Willinger, M. G.; Van Bokhoven, J. A. Following the structure of copper-zinc-alumina across the pressure gap in carbon dioxide hydrogenation. Nat. Catal. 2021, 4, 488–497.

[173]

Wang, Y. J.; Zhao, Y. S.; Ma, S. L.; Li, X.; Tan, D. Y.; Feng, J. J.; Liu, J. X.; Chen, B. Pressure dependence of structural behavior and electronic properties in double perovskite Ba2SmSbO6. J. Phys. Chem. C 2021, 125, 25253–25260.

[174]

Yang, W.; Shang, Z. Z.; Jiang, J. R.; Zhu, H. Y.; Hou, X. M.; He, Z. J.; Zhang, J.; Cui, Q. L. High-pressure studies of trimethylsilane azide by Raman scattering and synchrotron X-ray diffraction. J. Phys. Chem. B 2021, 125, 12042–12046.

Nano Research
Pages 10110-10133
Cite this article:
Shao S, Cui C, Tang Z, et al. Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse products. Nano Research, 2022, 15(12): 10110-10133. https://doi.org/10.1007/s12274-022-4576-z
Topics:
Part of a topical collection:

1691

Views

36

Crossref

29

Web of Science

33

Scopus

3

CSCD

Altmetrics

Received: 16 April 2022
Revised: 22 May 2022
Accepted: 23 May 2022
Published: 30 June 2022
© Tsinghua University Press 2022
Return