AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Molecular modulating of cobalt phthalocyanines on amino-functionalized carbon nanotubes for enhanced electrocatalytic CO2 conversion

Huajian Xu1Huizhu Cai1Linxia Cui2Limei Yu1( )Rui Gao2( )Chuan Shi1( )
State Key Laboratory of Fine Chemicals, College of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
Show Author Information

Graphical Abstract

Cobalt(II) phthalocyanine (CoPc)-COOH/carbon nanotube (CNT)-NH2 catalyst was obtained by amidation reaction. The presence of amide bonds not only increased the active site concentration, but also modulated the electron density of the active site. Density functional theory (DFT) calculations proved the formation of *COOH intermediate was the rate-determining step for CO2 reduction reaction (CO2RR).

Abstract

Metal porphyrins and metal phthalocyanines (Pc) constitute a promising class of metal molecular catalysts (MMCs) for efficient CO2-to-CO electrocatalytic conversion due to their well-defined molecular structures. How to adjust the local coordination and electronic environment of the metal center and enhance the molecular-level dispersion of the active components remains as great challenges for further improving the performance. Herein, a cobalt(II) Pc (CoPc)-COOH/carbon nanotube (CNT)-NH2 hybrid catalyst was rationally designed by clicking the CoPc-COOH molecules onto the surface of CNT-NH2 through amidation reaction. This novel hybrid catalyst exhibited the enhanced current density of 22.4 mA/cm2 and CO selectivity of 91% at −0.88 V vs. reversible hydrogen electrode (RHE) in the CO2 electroreduction, as compared with CoPc-COOH/CNT and CoPc/CNT samples. The superior activity was ascribed to the charge transfer induced by introduction of –COOH and –NH2 functional groups to CoPc and CNT, respectively, facilitating the active centers of CoI being generated at lower potentials, and leading to the highest turnover frequency (TOF) being obtained over the CoPc-COOH/CNT-NH2 hybrid catalyst. The inherent directivity and saturability of covalent bonds formed via the amidation reaction ensure not only a higher density of Co active centers, but also an improved stability for CO2 reduction reaction (CO2RR). The present study represents an effective strategy for improving MMCs performance by molecular modulating of metal phthalocyanines on functionalized carbon substrates directed by click confinement chemistry.

Electronic Supplementary Material

Download File(s)
12274_2022_4578_MOESM1_ESM.pdf (578.9 KB)

References

[1]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[2]

Tomboc, G. M.; Choi, S.; Kwon, T.; Hwang, Y. J.; Lee, K. Potential link between Cu surface and selective CO2 electroreduction: Perspective on future electrocatalyst designs. Adv. Mater. 2020, 32, 1908398.

[3]

Zhu, S. Q.; Delmo, E. P.; Li, T. H.; Qin, X. P.; Tian, J.; Zhang, L. L.; Shao, M. H. Recent advances in catalyst structure and composition engineering strategies for regulating CO2 electrochemical reduction. Adv. Mater. 2021, 33, 2005484.

[4]

Wagner, A.; Sahm, C. D.; Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 2020, 3, 775–786.

[5]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[6]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[7]

Rosen, J.; Hutchings, G. S.; Lu, Q.; Rivera, S.; Zhou, Y.; Vlachos, D. G.; Jiao, F. Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catal. 2015, 5, 4293–4299.

[8]

Marshall-Roth, T.; Libretto, N. J.; Wrobel, A. T.; Anderton, K. J.; Pegis, M. L.; Ricke, N. D.; Voorhis, T. V.; Miller, J. T.; Surendranath, Y. A pyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nat. Commun. 2020, 11, 5283.

[9]

Chen, C. J.; Sun, X. F.; Yan, X. P.; Wu, Y. H.; Liu, H. Z.; Zhu, Q. G.; Bediako, B. B. A.; Han, B. X. Boosting CO2 electroreduction on N, P-co-doped carbon aerogels. Angew. Chem., Int. Ed. 2020, 59, 11123–11129.

[10]

Jiang, Z.; Wang, Y.; Zhang, X.; Zheng, H. Z.; Wang, X. J.; Liang, Y. Y. Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes. Nano Res. 2019, 12, 2330–2334.

[11]

Zhu, H. L.; Zheng, Y. Q.; Shui, M. Synergistic interaction of nitrogen-doped carbon nanorod array anchored with cobalt phthalocyanine for electrochemical reduction of CO2. ACS Appl. Energy Mater. 2020, 3, 3893–3901.

[12]

Xia, Y. J.; Kashtanov, S.; Yu, P. F.; Chang, L. Y.; Feng, K.; Zhong, J.; Guo, J. H.; Sun, X. H. Identification of dual-active sites in cobalt phthalocyanine for electrochemical carbon dioxide reduction. Nano Energy 2020, 67, 104163.

[13]

Göttle, A. J.; Koper, M. T. M. Determinant role of electrogenerated reactive nucleophilic species on selectivity during reduction of CO2 catalyzed by metalloporphyrins. J. Am. Chem. Soc. 2018, 140, 4826–4834.

[14]

Liu, J. H.; Yang, L. M.; Ganz, E. Efficient and selective electroreduction of CO2 by single-atom catalyst two-dimensional TM-Pc monolayers. ACS Sustainable Chem. Eng. 2018, 6, 15494–15502.

[15]

Ma, J. J.; Zhu, H. L.; Zheng, Y. Q.; Shui, M. An insight into anchoring of cobalt phthalocyanines onto carbon: Efficiency of the CO2 reduction reaction. ACS Appl. Energy Mater. 2021, 4, 1442–1448.

[16]

Zhao, C. X.; Liu, J. N.; Wang, J.; Wang, C. D.; Guo, X.; Li, X. Y.; Chen, X.; Song, L.; Li, B. Q.; Zhang, Q. A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis. Sci. Adv. 2022, 8, eabn5091.

[17]

Choi, J.; Kim, J.; Wagner, P.; Gambhir, S.; Jalili, R.; Byun, S.; Sayyar, S.; Lee, Y. M.; MacFarlane, D. R.; Wallace, G. G. et al. Energy efficient electrochemical reduction of CO2 to CO using a three-dimensional porphyrin/graphene hydrogel. Energy Environ. Sci. 2019, 12, 747–755.

[18]

Yang, Z. J.; Zhang, X. F.; Long, C.; Yan, S. H.; Shi, Y. N.; Han, J. Y.; Zhang, J.; An, P. F.; Chang, L.; Tang, Z. Y. Covalently anchoring cobalt phthalocyanine on zeolitic imidazolate frameworks for efficient carbon dioxide electroreduction. CrystEngComm 2020, 22, 1619–1624.

[19]

Choi, J.; Wagner, P.; Gambhir, S.; Jalili, R.; MacFarlane, D. R.; Wallace, G. G.; Officer, D. L. Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO. ACS Energy Lett. 2019, 4, 666–672.

[20]

Abe, T.; Imaya, H.; Yoshida, T.; Tokita, S.; Schlettwein, D.; Wöhrle, D.; Kaneko, M. Electrochemical CO2 reduction catalysed by cobalt octacyanophthalocyanine and its mechanism. J. Porphyrins Phthalocyanines 1997, 1, 315–321.

[21]

Chen, K. J.; Cao, M. Q.; Lin, Y. Y.; Fu, J. W.; Liao, H. X.; Zhou, Y. J.; Li, H. M.; Qiu, X. Q.; Hu, J. H.; Zheng, X. S. et al. Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv. Funct. Mater. 2022, 32, 2111322.

[22]

Zhang, X.; Wang, Y.; Gu, M.; Wang, M. Y.; Zhang, Z. S.; Pan, W. Y.; Jiang, Z.; Zheng, H. Z.; Lucero, M.; Wang, H. L. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 2020, 5, 684–692.

[23]

Wu, Y. S.; Liang, Y. Y.; Wang, H. L. Heterogeneous molecular catalysts of metal phthalocyanines for electrochemical CO2 reduction reactions. Acc. Chem. Res. 2021, 54, 3149–3159.

[24]

Sun, L. B.; Reddu, V.; Fisher, A. C.; Wang, X. Electrocatalytic reduction of carbon dioxide: Opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 2020, 13, 374–403.

[25]

Zhang, X.; Wu, Z. S.; Zhang, X.; Li, L. W.; Li, Y. Y.; Xu, H. M.; Li, X. X.; Yu, X. L.; Zhang, Z. S.; Liang, Y. Y. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.

[26]

Morlanés, N.; Takanabe, K.; Rodionov, V. Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst. ACS Catal. 2016, 6, 3092–3095.

[27]

Gong, S. H.; Wang, W. B.; Xiao, X. X.; Liu, J.; Wu, C. D.; Lv, X. M. Elucidating influence of the existence formation of anchored cobalt phthalocyanine on electrocatalytic CO2-to-CO conversion. Nano Energy 2021, 84, 105904.

[28]

Han, N.; Wang, Y.; Ma, L.; Wen, J. G.; Li, J.; Zheng, H. C.; Nie, K. Q.; Wang, X. X.; Zhao, F. P.; Li, Y. F. et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 2017, 3, 652–664.

[29]

Zhu, M. H.; Chen, J. C.; Guo, R.; Xu, J.; Fang, X. C.; Han, Y. F. Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction. Appl. Catal. B:Environ. 2019, 251, 112–118.

[30]

Liu, Y. S.; McCrory, C. C. L. Modulating the mechanism of electrocatalytic CO2 reduction by cobalt phthalocyanine through polymer coordination and encapsulation. Nat. Commun. 2019, 10, 1683.

[31]

Ma, D. D.; Han, S. G.; Cao, C. S.; Wei, W. B.; Li, X. F.; Chen, B.; Wu, X. T.; Zhu, Q. L. Bifunctional single-molecular heterojunction enables completely selective CO2-to-CO conversion integrated with oxidative 3D nano-polymerization. Energy Environ. Sci. 2021, 14, 1544–1552.

[32]

Zhu, M. H.; Chen, J. C.; Huang, L. B.; Ye, R. Q.; Xu, J.; Han, Y. F. Covalently grafting cobalt porphyrin onto carbon nanotubes for efficient CO2 electroreduction. Angew. Chem., Int. Ed. 2019, 58, 6595–6599.

[33]

Wang, M.; Torbensen, K.; Salvatore, D.; Ren, S. X.; Joulié, D.; Dumoulin, F.; Mendoza, D.; Lassalle-Kaiser, B.; Işci, U.; Berlinguette, C. P. et al. CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 2019, 10, 3602.

[34]

Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

[35]

Ma, D. D.; Han, S. G.; Cao, C. S.; Li, X. F.; Wu, X. T.; Zhu, Q. L. Remarkable electrocatalytic CO2 reduction with ultrahigh CO/H2 ratio over single-molecularly immobilized pyrrolidinonyl nickel phthalocyanine. Appl. Catal. B: Environ. 2020, 264, 118530.

[36]

Cai, H. Z.; Chen, B. B.; Zhang, X.; Deng, Y. C.; Xiao, D. Q.; Ma, D.; Shi, C. Highly active sites of low spin FeIIN4 species: The identification and the ORR performance. Nano Res. 2021, 14, 122–130.

[37]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[38]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[39]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[40]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[41]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[42]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

[43]

Li, H. D.; Pan, Y.; Wang, Z. C.; Yu, Y. D.; Xiong, J.; Du, H. Y.; Lai, J. P.; Wang, L.; Feng, S. H. Coordination engineering of cobalt phthalocyanine by functionalized carbon nanotube for efficient and highly stable carbon dioxide reduction at high current density. Nano Res. 2022, 15, 3056–3064.

[44]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[45]

Ni, W. P.; Liu, Z. X.; Guo, X. G.; Zhang, Y.; Ma, C.; Deng, Y. J.; Zhang, S. G. Dual single-cobalt atom-based carbon electrocatalysts for efficient CO2-to-syngas conversion with industrial current densities. Appl. Catal. B: Environ. 2021, 291, 120092.

[46]

Ma, Z. J.; Zhang, X. L.; Han, X. Y.; Wu, D. P.; Wang, H. J.; Gao, Z. Y.; Xu, F.; Jiang, K. Synergistic adsorption and activation of nickel phthalocyanine anchored onto ketjenblack for CO2 electrochemical reduction. Appl. Surf. Sci. 2021, 538, 148134.

[47]

Wu, H. H.; Zeng, M.; Zhu, X.; Tian, C. C.; Mei, B. B.; Song, Y.; Du, X. L.; Jiang, Z.; He, L.; Xia, C. G. et al. Defect engineering in polymeric cobalt phthalocyanine networks for enhanced electrochemical CO2 reduction. ChemElectroChem 2018, 5, 2717–2721.

[48]

Zhang, M. D.; Si, D. H.; Yi, J. D.; Zhao, S. S.; Huang, Y. B.; Cao, R. Conductive phthalocyanine-based covalent organic framework for highly efficient electroreduction of carbon dioxide. Small 2020, 16, 2005254.

[49]

Zhu, M. H.; Ye, R. Q.; Jin, K.; Lazouski, N.; Manthiram, K. Elucidating the reactivity and mechanism of CO2 electroreduction at highly dispersed cobalt phthalocyanine. ACS Energy Lett. 2018, 3, 1381–1386.

Nano Research
Pages 3649-3657
Cite this article:
Xu H, Cai H, Cui L, et al. Molecular modulating of cobalt phthalocyanines on amino-functionalized carbon nanotubes for enhanced electrocatalytic CO2 conversion. Nano Research, 2023, 16(3): 3649-3657. https://doi.org/10.1007/s12274-022-4578-x
Topics:
Part of a topical collection:

1458

Views

24

Crossref

25

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 26 April 2022
Revised: 22 May 2022
Accepted: 24 May 2022
Published: 18 June 2022
© Tsinghua University Press 2022
Return