AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Interfacial engineering of metallic rhodium by thiol modification approach for ambient electrosynthesis of ammonia

Meng Jin1,2Xinyuan Zhang1,2Xian Zhang1,2( )Hongjian Zhou1,2Miaomiao Han3Yunxia Zhang1,2Guozhong Wang1,2Haimin Zhang1,2( )
Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
University of Science and Technology of China, Hefei 230026, China
School of Science, Huzhou University, Huzhou 313000, China
Show Author Information

Graphical Abstract

A comprehensive understanding of controlling the surface environment toward nitrogen reduction reaction performance combined with experimental and theoretical studies over different dodecanethiol coverages Rh catalysts, revealing the synthetical effect of metal–organic interface and H* coverage on the electrochemical NRR activity.

Abstract

Here we report a vapor-phase reaction approach to fabricate rhodium(I)-dodecanethiol complex coated on carbon fiber cloth (Rh(I)-SC12H25/CFC), followed by low-temperature pyrolysis to achieve dodecanethiol modified Rh (Rh@SC12H25/CFC) for electrocatalytic nitrogen reduction reaction (NRR). The results demonstrate that after pyrolysis for 0.5 h at 150 °C, the obtained Rh@SC12H25/CFC-0.5 exhibits excellent NRR activity with an NH3 yield rate of 121.2 ± 6.6 µg∙h−1∙cm−2 (or 137.7 ± 7.5 µg∙h−1∙mgRh−1) and a faradaic efficiency (FE) of 51.6% ± 3.8% at −0.2 V (vs. RHE) in 0.1 M Na2SO4. The theoretical calculations unveil that the adsorption of dodecanethiol on the hollow sites of Rh(111) plane is thermodynamically favorable, effectively regulating the electronic structure and surface wettability of metallic Rh. Importantly, the dodecanethiol modification on Rh(111) obviously decreases the surface H* coverage, thus inhibiting the competitive hydrogen evolution reaction and concurrently reducing the electrocatalytic NRR energy barrier.

Electronic Supplementary Material

Download File(s)
12274_2022_4585_MOESM1_ESM.pdf (5.4 MB)

References

1

Xu, F. C.; Wu, F. F.; Zhu, K. L.; Fang, Z. P.; Jia, D. M.; Wang, Y. K.; Jia, G.; Low. J. X.; Ye, W.; Sun, Z. T. et al. Boron doping and high curvature in Bi nanorolls for promoting photoelectrochemical nitrogen fixation. Appl. Catal. B:Environ. 2021, 284, 119689.

2

Tong, Y. Y.; Guo, H. P.; Liu, D. L.; Yan, X.; Su, P. P.; Liang, J.; Zhou, S.; Liu, J.; Lu, G. Q.; Dou, S. X. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem. , Int. Ed. 2020, 59, 7356–7361.

3

Ling, C. Y.; Zhang, Y. H.; Li, Q.; Bai, X. W.; Shi, L.; Wang, J. L. New mechanism for N2 reduction: The essential role of surface hydrogenation. J. Am. Chem. Soc. 2019, 141, 18264–18270.

4

Chen, Y.; Guo, R. J.; Peng, X. Y.; Wang, X. Q.; Liu, X. J.; Ren, J. Q.; He, J.; Zhuo, L. C.; Sun, J. Q.; Liu, Y. F. et al. Highly productive electrosynthesis of ammonia by admolecule-targeting single Ag sites. ACS Nano 2020, 14, 6938–6946.

5

Li, S. X.; Luo, Y. L.; Yue, L. C.; Li, T. S.; Wang, Y.; Liu, Q.; Cui, G. W.; Zhang, F.; Asiri, A. M.; Sun, X. P. An amorphous WC thin film enabled high-efficiency N2 reduction electrocatalysis under ambient conditions. Chem. Commun. 2021, 57, 7806–7809.

6

Peng, X. Y.; Mi, Y. Y.; Bao, H. H.; Liu, Y. F.; Qi, D. F.; Qiu, Y.; Zhuo, L. C.; Zhao, S. Z.; Sun, J. Q.; Tang, X. L. et al. Ambient electrosynthesis of ammonia with efficient denitration. Nano Energy 2020, 78, 105321.

7

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

8

Wang, Y.; Chen, A. R.; Lai, S. H.; Peng, X. Y.; Zhao, S. Z.; Hu, G. Z.; Qiu, Y.; Ren, J. Q.; Liu, X. J.; Luo, J. Self-supported NbSe2 nanosheet arrays for highly efficient ammonia electrosynthesis under ambient conditions. J. Catal. 2020, 381, 78–83.

9

Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H. L.; Feng, X. F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.

10

Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.

11

Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.

12

Fan, X. F.; Xie, L. S.; Liang, J.; Ren, Y. C.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Li, N.; Tang, B. et al. In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Res. 2022, 15, 3050–3055.

13

Liao, W. R.; Qi, L.; Wang, Y. L.; Qin, J. Y.; Liu, G. Y.; Liang, S. J.; He, H. Y.; Jiang, L. L. Interfacial engineering promoting electrosynthesis of ammonia over Mo/phosphotungstic acid with high performance. Adv. Funct. Mater. 2021, 31, 2009151.

14

Chen, T. T.; Liu, S.; Ying, H.; Li, Z. H.; Hao, J. C. Reactive ionic liquid enables the construction of 3D Rh particles with nanowire subunits for electrocatalytic nitrogen reduction. Chem. Asian J. 2020, 15, 1081–1087.

15

Yu, H.; Wang, Z.; Tian, W.; Dai, Z.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Boosting electrochemical nitrogen fixation by mesoporous Rh film with boron and sulfur co-doping. Mater. Today Energy 2021, 20, 100681.

16

Wang, H. J.; Mao, Q. Q.; Yu, H. J.; Wang, S. Q.; Xu, Y.; Li, X. N.; Wang, Z. Q.; Wang, L. Enhanced electrocatalytic performance of mesoporous Au–Rh bimetallic films for ammonia synthesis. Chem. Eng. J. 2021, 418, 129493.

17

Liu, H. M.; Han, S. H.; Zhao, Y.; Zhu, Y. Y.; Tian, X. L.; Zeng, J. H.; Jiang, J. X.; Xia, B. Y.; Chen, Y. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. J. Mater. Chem. A 2018, 6, 3211–3217.

18

Zhao, L.; Liu, X. J.; Zhang, S.; Zhao, J.; Xu, X. L.; Du, Y.; Sun, X.; Zhang, N.; Zhang, Y.; Ren, X. et al. Rational design of bimetallic Rh0.6Ru0.4 nanoalloys for enhanced nitrogen reduction electrocatalysis under mild conditions. J. Mater. Chem. A 2021, 9, 259–263.

19

Wang, J.; Huang, B. L.; Ji, Y. J.; Sun, M. Z.; Wu, T.; Yin, R. G.; Zhu, X.; Li, Y. Y.; Shao, Q.; Huang, X. Q. A general strategy to glassy M–Te (M = Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation. Adv. Mater. 2020, 32, 1907112.

20

Su, J. F.; Zhao, H. Y.; Fu, W. W.; Tian, W.; Yang, X. H.; Zhang, H. J.; Ling, F. L.; Wang, Y. Fine rhodium phosphides nanoparticles embedded in N, P dual-doped carbon film: New efficient electrocatalysts for ambient nitrogen fixation. Appl. Catal. B:Environ. 2020, 265, 118589.

21

Zhang, N.; Li, L. G.; Wang, J.; Hu, Z. W.; Shao, Q.; Xiao, X. G.; Huang, X. Q. Surface-regulated rhodium-antimony nanorods for nitrogen fixation. Angew. Chem. , Int. Ed. 2020, 59, 8066–8071.

22

Chen, X. R.; Guo, Y. T.; Du, X. C.; Zeng, Y. S.; Chu, J. W.; Gong, C. H.; Huang, J. W.; Fan, C.; Wang, X. F.; Xiong, J. Atomic structure modification for electrochemical nitrogen reduction to ammonia. Adv. Energy Mater. 2020, 10, 1903172.

23

Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Xie, Y.; Wu, A. P.; Dong, X.; Guo, D. Z.; Tian, C. G.; Fu, H. G. Interfacial engineering of MoO2–FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 2020, 32, 2000455.

24

Schoenbaum, C. A.; Schwartz, D. K.; Medlin, J. W. Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers. Acc. Chem. Res. 2014, 47, 1438–1445.

25

Marshall, S. T.; Schwartz, D. K.; Medlin, J. W. Adsorption of oxygenates on alkanethiol-functionalized Pd(111) surfaces: Mechanistic insights into the role of self-assembled monolayers on catalysis. Langmuir 2011, 27, 6731–6737.

26

Ahmed, M. I.; Liu, C. W.; Zhao, Y.; Ren, W. H.; Chen, X. J.; Chen, S.; Zhao, C. Metal-sulfur linkages achieved by organic tethering of ruthenium nanocrystals for enhanced electrochemical nitrogen reduction. Angew. Chem. , Int. Ed. 2020, 59, 21465–21469.

27

Du, Z. B.; Liang, J.; Li, S. X.; Xu, Z. Q.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Liu, Y.; Kong, Q. Q. et al. Alkylthiol surface engineering: An effective strategy toward enhanced electrocatalytic N2-to-NH3 fixation by a CoP nanoarray. J. Mater. Chem. A 2021, 9, 13861–13866.

28

Xu, T.; Liang, J.; Wang, Y. Y.; Li, S. X.; Du, Z. B.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Shi, X. F. et al. Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res. 2022, 15, 1039–1046.

29

Yao, C. H.; Guo, N.; Xi, S. B.; Xu, C. Q.; Liu, W.; Zhao, X. X.; Li, J.; Fang, H. Y.; Su, J.; Chen, Z. X. et al. Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun. 2020, 11, 4389.

30

Tan, Y.; Yan, L.; Huang, C. Q.; Zhang, W. N.; Qi, H. F.; Kang, L. L.; Pan, X. L.; Zhong, Y. J.; Hu, Y.; Ding, Y. J. Fabrication of an Au25-Cys-Mo electrocatalyst for efficient nitrogen reduction to ammonia under ambient conditions. Small 2021, 17, 2100372.

31

Hu, L.; de la Rama, L. P.; Efremov, M. Y.; Anahory, Y.; Schiettekatte, F.; Allen, L. H. Synthesis and characterization of single-layer silver-decanethiolate lamellar crystals. J. Am. Chem. Soc. 2011, 133, 4367–4376.

32

Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.

33

Watt, G. W.; Chrisp, J. D. Spectrophotometric method for determination of hydrazine. Anal. Chem. 1952, 24, 2006–2008.

34

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B:Condens. Matter. 1994, 49, 14251–14269.

35

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

36

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B:Condens. Matter. 1994, 50, 17953–17979.

37

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

38

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

39

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

40

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT:A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

41

Zhang, Y. X.; Zeng, H. C. Gold(I)-alkanethiolate nanotubes. Adv. Mater. 2009, 21, 4962–4965.

42

Wang, M. F.; Liu, S. S.; Qian, T.; Liu, J.; Zhou, J. Q.; Ji, H. Q.; Xiong, J.; Zhong, J.; Yan, C. L. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 2019, 10, 341.

43

Guo, J. H.; Cao, Y. T.; Shi, R.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. A photochemical route towards metal sulfide nanosheets from layered metal thiolate complexes. Angew. Chem. , Int. Ed. 2019, 58, 8443–8447.

44

Zhang, Z. P.; Wang, X. Y.; Yuan, K.; Zhu, W.; Zhang, T.; Wang, Y. H.; Ke, J.; Zheng, X. Y.; Yan, C. H.; Zhang, Y. W. Free-standing iridium and rhodium-based hierarchically-coiled ultrathin nanosheets for highly selective reduction of nitrobenzene to azoxybenzene under ambient conditions. Nanoscale 2016, 8, 15744–15752.

45

Du, C.; Qiu, C. L.; Fang, Z. Y.; Li, P.; Gao, Y. J.; Wang, J. G.; Chen, W. Interface hydrophobic tunnel engineering: A general strategy to boost electrochemical conversion of N2 to NH3. Nano Energy 2022, 92, 106784.

46

Fijolek, H. G.; Grohal, J. R.; Sample, J. L.; Natan, M. J. A facile trans to gauche conversion in layered silver butanethiolate. Inorg. Chem. 1997, 36, 622–628.

47

Zhao, X. J.; Zhou, L. Y.; Zhang, W. Y.; Hu, C. Y.; Dai, L.; Ren, L. T.; Wu, B. H.; Fu, G.; Zheng, N. F. Thiol treatment creates selective palladium catalysts for semihydrogenation of internal alkynes. Chem 2018, 4, 1080–1091.

48

Zhang, C. X.; Liu, H. X.; Liu, Y. F.; Liu, X. J.; Mi, Y. Y.; Guo, R. J.; Sun, J. Q.; Bao, H. H.; He, J.; Qiu, Y. et al. Rh2S3/N-doped carbon hybrids as pH-universal bifunctional electrocatalysts for energy-saving hydrogen evolution. Small Methods 2020, 4, 2000208.

49

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1n3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

50

Zhang, S. B.; Jin, M.; Shi, T. F.; Han, M. M.; Sun, Q.; Lin, Y.; Ding, Z. H.; Zheng, L. R.; Wang, G. Z.; Zhang, Y. X. et al. Electrocatalytically active Fe-(O-C2)4 single-atom sites for efficient reduction of nitrogen to ammonia. Angew. Chem. , Int. Ed. 2020, 59, 13423–13429.

51

Kahsar, K. R.; Schwartz, D. K.; Medlin, J. W. Control of metal catalyst selectivity through specific noncovalent molecular interactions. J. Am. Chem. Soc. 2014, 136, 520–526.

52

Yan, Y.; Liu, C. Y.; Jian, H. W.; Cheng, X.; Hu, T.; Wang, D.; Shang, L.; Chen, G.; Schaaf, P.; Wang, X. Y. et al. Substitutionally dispersed high-oxidation CoOx clusters in the lattice of rutile TiO2 triggering efficient Co-Ti cooperative catalytic centers for oxygen evolution reactions. Adv. Funct. Mater. 2021, 31, 2009610.

53

Grönbeck, H.; Häkkinen, H. Polymerization at the alkylthiolate-Au(1 1 1) interface. J. Phys. Chem. B 2007, 111, 3325–3327.

54

Chen, Z.; Zhao, J. X.; Cabrera, C. R.; Chen, Z. F. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction. Small Methods 2019, 3, 1800368.

55

Jin, M.; Liu, Y. Y.; Zhang, X.; Wang, J. L.; Zhang, S. B.; Wang, G. Z.; Zhang, Y. X.; Yin, H. J.; Zhang, H. M.; Zhao, H. J. Selective electrocatalytic hydrogenation of nitrobenzene over copper-platinum alloying catalysts: Experimental and theoretical studies. Appl. Catal. B:Environ. 2021, 298, 120545.

56

Joo, S.; Kim, K.; Kwon, O.; Oh, J.; Kim, H. J.; Zhang, L. J.; Zhou, J.; Wang, J. Q.; Jeong, H. Y.; Han, J. W. et al. Enhancing thermocatalytic activities via up-shift of the d-band center of exsolved Co-Ni-Fe ternary alloy nanoparticles for dry reforming of methane. Angew. Chem. , Int. Ed. 2021, 60, 15912–15919.

57

Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J. W.; Lee, J. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 2019, 141, 6254–6262.

58

Shi, L.; Li, Q.; Ling, C. Y.; Zhang, Y. H.; Ouyang, Y. X.; Bai, X. W.; Wang, J. L. Metal-free electrocatalyst for reducing nitrogen to ammonia using a Lewis acid pair. J. Mater. Chem. A 2019, 7, 4865–4871.

59

Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem 2015, 8, 2180–2186.

60

Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

61

Choi, C.; Gu, G. H.; Noh, J.; Park, H. S.; Jung, Y. Understanding potential-dependent competition between electrocatalytic dinitrogen and proton reduction reactions. Nat. Commun. 2021, 12, 4353.

62

Liu, X.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Isolated boron sites for electroreduction of dinitrogen to ammonia. ACS Catal. 2020, 10, 1847–1854.

63

Du, W.; Shi, Y. M.; Zhou, W.; Yu, Y. F.; Zhang, B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting hydrogen evolution reaction. Angew. Chem. , Int. Ed. 2021, 60, 7051–7055.

64

Yao, Y.; Zhu, Y. H.; Pan, C. Q.; Wang, C. Y.; Hu, S. Y.; Xiao, W.; Chi, X.; Fang, Y. R.; Yang, J.; Deng, H. T. et al. Interfacial sp C-O-Mo hybridization originated high-current density hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 8720–8730.

Nano Research
Pages 8826-8835
Cite this article:
Jin M, Zhang X, Zhang X, et al. Interfacial engineering of metallic rhodium by thiol modification approach for ambient electrosynthesis of ammonia. Nano Research, 2022, 15(10): 8826-8835. https://doi.org/10.1007/s12274-022-4585-y
Topics:

2140

Views

15

Crossref

16

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 22 March 2022
Revised: 18 May 2022
Accepted: 26 May 2022
Published: 02 July 2022
© Tsinghua University Press 2022
Return