AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Chemical cross-linking and mechanically reinforced carbon network constructed by graphene boosts potassium ion storage

Chenxu Wang1,§Ruohan Yu2,3,§Wen Luo1,2( )Wencong Feng2Yuanhao Shen2Nuo Xu1Liqiang Mai2
Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 Wuhan, China
Nanostructure Research Centre (NRC), Wuhan University of Technology, Wuhan 430070, China

§ Chenxu Wang and Ruohan Yu contributed equally to this work.

Show Author Information

Graphical Abstract

A new synthetic strategy by sol–gel with acid etching for chemical cross-linking of graphene sheets was proposed. The obtained carbon network constructed by graphene (CNCG) exhibits remarkable electrical conductivity and mechanical enhancement as high-performance potassium ion battery anode.

Abstract

Carbon-based electrodes of potassium-ion batteries are of great research interest ascribed to their low cost and environmentally friendly distinctions. However, traditional carbon materials usually exhibit weak mechanical properties and incomplete crosslinking, resulting in poor stability and electrochemical performance. Herein, we report a new strategy for modifying reduced graphene oxide into a uniform few-layer structure through a sol–gel method combined with acid etching treatment. The obtained chemical cross-linking and mechanically reinforced carbon network constructed by graphene (CNCG) demonstrates excellent electrochemical and mechanical properties. Adopted as a free-standing anode (~ 7 mg·cm−2) for potassium ion battery, the as-achieved CNCG delivers a high reversible specific capacity of 317.7 mAh·g−1 at a current density of 50 mA·g−1 and admirable cycle stability (208.4 mAh·g−1 at 50 mA·g−1 after 500 cycles). The highly reversible structural stability and fully cross-linked properties during potassiation are revealed by ex-situ characterization. This work provides new ideas for the synthesis of new carbon materials and the development of high-performance electrodes.

Electronic Supplementary Material

Download File(s)
12274_2022_4586_MOESM1_ESM.pdf (899.4 KB)

References

1

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

2

Mai, L. Q.; Yan, M. Y.; Zhao, Y. L. Track batteries degrading in real time. Nature 2017, 546, 469–470.

3

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

4

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

5

Liang, G. J.; Li, X. L.; Wang, Y. B.; Yang, S.; Huang, Z. D.; Yang, Q.; Wang, D. H.; Dong, B. B.; Zhu, M. S.; Zhi, C. Y. Building durable aqueous K-ion capacitors based on MXene family. Nano Res. Energy 2022, 1: e9120002.

6

Wu, X. Y.; Leonard, D. P.; Ji, X. L. Emerging non-aqueous potassium-ion batteries: Challenges and opportunities. Chem. Mater. 2017, 29, 5031–5042.

7

Kubota, K.; Dahbi, M.; Hosaka, T.; Kumakura, S.; Komaba, S. Towards K-ion and Na-ion batteries as “beyond Li-ion”. Chem. Rec. 2018, 18, 459–479.

8

Min, X.; Xiao, J.; Fang, M. H.; Wang, W.; Zhao, Y. J.; Liu, Y. A.; Abdelkader, A. M.; Xi, K.; Kumar, R. V.; Huang, Z. H. Potassium-ion batteries: Outlook on present and future technologies. Energy Environ. Sci. 2021, 14, 2186–2243.

9

Matsuda, Y.; Nakashima, H.; Morita, M.; Takasu, Y. Behavior of some ions in mixed organic electrolytes of high energy density batteries. J. Electrochem. Soc. 1981, 128, 2552–2556.

10

Ma, L. B.; Lv, Y. H.; Wu, J. X.; Xia, C.; Kang, Q.; Zhang, Y. Z.; Liang, H. F.; Jin, Z. Recent advances in anode materials for potassium-ion batteries: A review. Nano Res. 2021, 14, 4442–4470.

11

Ge, X. F.; Liu, S. H.; Qiao, M.; Du, Y. C.; Li, Y. F.; Bao, J. C.; Zhou, X. S. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew. Chem. , Int. Ed. 2019, 58, 14578–14583.

12

Deng, S. K.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212.

13

Chen, Y. C.; Qin, L.; Lei, Y.; Li, X. J.; Dong, J. H.; Zhai, D. Y.; Li, B. H.; Kang, F. Y. Correlation between microstructure and potassium storage behavior in reduced graphene oxide materials. ACS Appl. Mater. Interfaces 2019, 11, 45578–45585.

14

Xu, C. H.; Xu, B. H.; Gu, Y.; Xiong, Z. G.; Sun, J.; Zhao, X. S. Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 2013, 6, 1388–1414.

15

Li, H.; Liu, L. F.; Yang, F. L. Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup. J. Mater. Chem. A 2013, 1, 3446–3453.

16
LiuL. Y.LinZ. F.Chane-ChingJ. Y.ShaoH.TabernaP. L.SimonP. 3D rGO aerogel with superior electrochemical performance for K-ion batteryEnergy Storage Mater.20191930631310.1016/j.ensm.2019.03.013

Liu, L. Y.; Lin, Z. F.; Chane-Ching, J. Y.; Shao, H.; Taberna, P. L.; Simon, P. 3D rGO aerogel with superior electrochemical performance for K-ion battery. Energy Storage Mater. 2019, 19, 306–313.

17

Ju, Z. C.; Li, P. Z.; Ma, G. Y.; Xing, Z.; Zhuang, Q. C.; Qian, Y. T. Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater. 2018, 11, 38–46.

18

Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater. 2020, 32, 1904177.

19

Luo, W.; Wan, J. Y.; Ozdemir, B.; Bao, W. Z.; Chen, Y. N.; Dai, J. Q.; Lin, H.; Xu, Y.; Gu, F.; Barone, V. et al. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 15, 7671–7677.

20

Hu, G. W.; Zhong, K. Z.; Yu, R. H.; Liu, Z. H.; Zhang, Y. Y.; Wu, J. S.; Zhou, L.; Mai, L. Q. Enveloping SiOx in N-doped carbon for durable lithium storage via an eco-friendly solvent-free approach. J. Mater. Chem. A 2020, 8, 13285–13291.

21

Xia, Q.; Wang, B.; Wu, Y. P.; Luo, H. J.; Zhao, S. Y.; van Ree, T. Phenyl tris-2-methoxydiethoxy silane as an additive to PC-based electrolytes for lithium-ion batteries. J. Power Sources 2008, 180, 602–606.

22

Hu, G. W.; Yu, R. H.; Liu, Z. H.; Yu, Q.; Zhang, Y. Y.; Chen, Q.; Wu, J. S.; Zhou, L.; Mai, L. Q. Surface oxidation layer-mediated conformal carbon coating on Si nanoparticles for enhanced lithium storage. ACS Appl. Mater. Interfaces 2021, 13, 3991–3998.

23

Sun, X. H.; Li, C. P.; Wong, W. K.; Wong, N. B.; Lee, C. S.; Lee, S. T.; Teo, B. K. Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J. Am. Chem. Soc. 2002, 124, 14464–14471.

24

Liu, Z. H.; Zhao, Y. L.; He, R. H.; Luo, W.; Meng, J. S.; Yu, Q.; Zhao, D. Y.; Zhou, L.; Mai, L. Q. Yolk@shell SiOx/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage. Energy Storage Mater. 2019, 19, 299–305.

25

Yi, Y. Y.; Li, J. Q.; Zhao, W.; Zeng, Z. H.; Lu, C.; Ren, H.; Sun, J. Y.; Zhang, J.; Liu, Z. F. Temperature-mediated engineering of graphdiyne framework enabling high-performance potassium storage. Adv. Funct. Mater. 2020, 30, 2003039.

26

Oliver, W. C.; Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583.

27

Wang, Z. H.; Qie, L.; Yuan, L. X.; Zhang, W. X.; Hu, X. L.; Huang, Y. H. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 2013, 55, 328–334.

28

Zhou, X. F.; Chen, L. L.; Zhang, W. H.; Wang, J. W.; Liu, Z. J.; Zeng, S. F.; Xu, R.; Wu, Y.; Ye, S. F.; Feng, Y. Z. et al. Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 2019, 19, 4965–4973.

29

Feng, W. C.; Wang, H.; Jiang, Y. L.; Zhang, H. Z.; Luo, W.; Chen, W.; Shen, C. L.; Wang, C. X.; Wu, J. S.; Mai, L. Q. A strain-relaxation red phosphorus freestanding anode for non-aqueous potassium ion batteries. Adv. Energy Mater. 2022, 12, 2103343.

30

Ge, J. M.; Fan, L.; Rao, A. M.; Zhou, J.; Lu, B. A. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustainability 2022, 5, 225–234.

31

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

32

Choi, C.; Ashby, D. S.; Butts, D. M.; DeBlock, R. H.; Wei, Q. L.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2020, 5, 5–19.

33

Chen, M.; Wang, W.; Liang, X.; Gong, S.; Liu, J.; Wang, Q.; Guo, S. J.; Yang, H. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1800171.

34

Dai, Y. H.; Liao, X. B.; Yu, R. H.; Li, J. H.; Li, J. T.; Tan, S. S.; He, P.; An, Q. Y.; Wei, Q. L.; Chen, L. N. et al. Quicker and more Zn2+ storage predominantly from the interface. Adv. Mater. 2021, 33, 2100359.

35

Luo, W.; Li, F.; Zhang, W. R.; Han, K.; Gaumet, J. J.; Schaefer, H. E.; Mai, L. Q. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 2019, 12, 1025–1031.

36

Zhang, C.; Firestein, K. L.; Fernando, J. F. S.; Siriwardena, D.; von Treifeldt, J. E.; Golberg, D. Recent progress of in situ transmission electron microscopy for energy materials. Adv. Mater. 2020, 32, 1904094.

Nano Research
Pages 9019-9025
Cite this article:
Wang C, Yu R, Luo W, et al. Chemical cross-linking and mechanically reinforced carbon network constructed by graphene boosts potassium ion storage. Nano Research, 2022, 15(10): 9019-9025. https://doi.org/10.1007/s12274-022-4586-x
Topics:

846

Views

10

Crossref

10

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 22 March 2022
Revised: 18 May 2022
Accepted: 26 May 2022
Published: 08 July 2022
© Tsinghua University Press 2022
Return