AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Whisker of biphasic calcium phosphate ceramics: Osteo-immunomodulatory behaviors

Jinjie WuCong FengMenglu WangHongfeng WuXiangdong ZhuXiangfeng Li( )Xuening Chen( )Xingdong Zhang
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
Show Author Information

Graphical Abstract

Biphasic calcium phosphate (BCP)-HW ceramics induced the M2 polarization of macrophages, showing better promoting effect on the osteogenesis of MC3T3-E1 cells through the paracrine pathway and new bone formation in vitro.

Abstract

Immune systems play a critical role in the regulation of bone formation and homeostasis, which arouses a growing interest in the development of biomaterials that can modulate both immune response and osteogenesis. In this study, biphasic calcium phosphate (BCP) ceramics were modified with different whiskered surface, and their effects on macrophage polarization and functional status were investigated. The results showed that compared to BCP-W ceramics with long and solid whiskers, BCP-HW ceramics with short and hollow whiskers surface were conducive to protein adsorption and macrophage elongation. Furthermore, BCP-HW ceramics down-regulated the expression of M1 macrophage markers (Il1β, Tnfα, and iNos), promoted the expression of M2 macrophage markers (Il10 and Arg) and growth factors (Tgfβ1 and Bmp2), which might be attributed to the differential integrin expression regulated by different whisker structures. The conditioned medium derived from the supernatant of macrophage/whiskered ceramic co-culture was further used to culture MC3T3-E1 pre-osteoblasts to evaluate the effects of whiskered ceramic-mediated macrophage secretion on osteogenesis in vitro. Compared with BCP-W ones, the secretion pattern induced by BCP-HW ceramics could promote the expression of bone markers in pre-osteoblasts, which might due to the activation of intracellular signaling cascades like BMP/Smad and TGF-β/Smad signaling pathways. A murine intramuscular implantation model suggested that after implantation for 1, 2, and 3 weeks, BCP-HW ceramics drove the switch of macrophages to ARG+ wound-healing M2 phenotype, while BCP-W ceramics increased the proportion of iNOS+ M1 inflammatory macrophages. At 2 months, only BCP-HW could induce ectopic bone formation. Taken together, these results indicated that BCP ceramics with hollow whiskers were capable of creating a proper inflammatory microenvironment to induce bone formation. These whiskered BCP ceramics with good osteo-immunomodulatory capacity hold promise in serving as bone grafts to achieve desired bone repair and regeneration.

Electronic Supplementary Material

Download File(s)
12274_2022_4591_MOESM1_ESM.pdf (731.3 KB)

References

1

Takayanagi, H. Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 2007, 7, 292–304.

2

Arron, J. R.; Choi, Y. Bone versus immune system. Nature 2000, 408, 535–536.

3

Nakashima, T.; Takayanagi, H. Osteoimmunology: Crosstalk between the immune and bone systems. J. Clin. Immunol. 2009, 29, 555–567.

4

Walsh, M. C.; Kim, N.; Kadono, Y.; Rho, J.; Lee, S. Y.; Lorenzo, J.; Choi, Y. Osteoimmunology: Interplay between the immune system and bone metabolism. Ann. Rev. Immunol. 2006, 24, 33–63.

5

Claes, L.; Recknagel, S.; Ignatius, A. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 2012, 8, 133–143.

6

Sridharan, R.; Cameron, A. R.; Kelly, D. J.; Kearney, C. J.; O’Brien, F. J. Biomaterial based modulation of macrophage polarization: A review and suggested design principles. Mater. Today 2015, 18, 313–325.

7

Wang, M. L.; Chen, F. Y.; Wang, J.; Chen, X. N.; Liang, J.; Yang, X.; Zhu, X. D.; Fan, Y. J.; Zhang, X. D. Calcium phosphate altered the cytokine secretion of macrophages and influenced the homing of mesenchymal stem cells. J. Mater. Chem. B 2018, 6, 4765–4774.

8

Koh, T. J.; DiPietro, L. A. Inflammation and wound healing: The role of the macrophage. Expert Rev. Mol. Med. 2011, 13, e23.

9

Batoon, L.; Millard, S. M.; Wullschleger, M. E.; Preda, C.; Wu, A. C. K.; Kaur, S.; Tseng, H. W.; Hume, D. A.; Levesque, J. P.; Raggatt, L. J. et al. CD169+ macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair. Biomaterials 2019, 196, 51–66.

10

Mills, C. D.; Kincaid, K.; Alt, J. M.; Heilman, M. J.; Hill, A. M. Pillars article: M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 2000, 164, 6166–6173.

11

Brown, B. N.; Valentin, J. E.; Stewart-Akers, A. M.; McCabe, G. P.; Badylak, S. F. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 2009, 30, 1482–1491.

12

Brown, B. N.; Londono, R.; Tottey, S.; Zhang, L.; Kukla, K. A.; Wolf, M. T.; Daly, K. A.; Reing, J. E.; Badylak, S. F. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 2012, 8, 978–987.

13

Lau, S. K.; Chu, P. G.; Weiss, L. M. CD163: A specific marker of macrophages in paraffin-embedded tissue samples. Am. J. Clin. Pathol. 2004, 122, 794–801.

14

Vasconcelos, D. P.; Costa, M.; Amaral, I. F.; Barbosa, M. A.; Águas, A. P.; Barbosa, J. N. Development of an immunomodulatory biomaterial: Using resolvin D1 to modulate inflammation. Biomaterials 2015, 53, 566–573.

15

Hotchkiss, K. M.; Reddy, G. B.; Hyzy, S. L.; Schwartz, Z.; Boyan, B. D.; Olivares-Navarrete, R. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater. 2016, 31, 425–434.

16

Paul, N. E.; Skazik, C.; Harwardt, M.; Bartneck, M.; Denecke, B.; Klee, D.; Salber, J.; Zwadlo-Klarwasser, G. Topographical control of human macrophages by a regularly microstructured polyvinylidene fluoride surface. Biomaterials 2008, 29, 4056–4064.

17

Ma, Q. L.; Zhao, L. Z.; Liu, R. R.; Jin, B. Q.; Song, W.; Wang, Y.; Zhang, Y. S.; Chen, L. H.; Zhang, Y. M. Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials 2014, 35, 9853–9867.

18

Hong, Y. L.; Fan, H. S.; Li, B.; Guo, B.; Liu, M.; Zhang, X. D. Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics. Mater. Sci. Eng. R Rep. 2010, 70, 225–242.

19

Zhi, W.; Wang, X. H.; Sun, D.; Chen, T. J.; Yuan, B.; Li, X. F.; Chen, X. N.; Wang, J. X.; Xie, Z.; Zhu, X. D. et al. Optimal regenerative repair of large segmental bone defect in a goat model with osteoinductive calcium phosphate bioceramic implants. Bioact. Mater. 2022, 11, 240–253.

20

Kuo, S. W.; Lin, H. I.; Ho, J. H. C.; Shih, Y. R. V.; Chen, H. F.; Yen, T. J.; Lee, O. K. Regulation of the fate of human mesenchymal stem cells by mechanical and stereo-topographical cues provided by silicon nanowires. Biomaterials 2012, 33, 5013–5022.

21

Sjöström, T.; Dalby, M. J.; Hart, A.; Tare, R.; Oreffo, R. O. C.; Su, B. Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells. Acta Biomater. 2009, 5, 1433–1441.

22

Myllymaa, S.; Kaivosoja, E.; Myllymaa, K.; Sillat, T.; Korhonen, H.; Lappalainen, R.; Konttinen, Y. T. Adhesion, spreading and osteogenic differentiation of mesenchymal stem cells cultured on micropatterned amorphous diamond, titanium, tantalum and chromium coatings on silicon. J. Mater. Sci. Mater. Med. 2010, 21, 329–341.

23

Krishna, L.; Dhamodaran, K.; Jayadev, C.; Chatterjee, K.; Shetty, R.; Khora, S. S.; Das, D. Nanostructured scaffold as a determinant of stem cell fate. Stem Cell. Res. Ther. 2016, 7, 188.

24

Behnamghader, A.; Bagheri, N.; Raissi, B.; Moztarzadeh, F. Phase development and sintering behaviour of biphasic HA-TCP calcium phosphate materials prepared from hydroxyapatite and bioactive glass. J. Mater. Sci. Mater. Med. 2008, 19, 197–201.

25

Gonçalves, G.; Cruz, S. M. A.; Ramalho, A.; Grácio, J.; Marques, P. A. A. P. Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement. Nanoscale 2012, 4, 2937–2945.

26

Wang, Y. Y.; Wang, M. L.; Chen, F. Y.; Feng, C.; Chen, X. N.; Li, X. F.; Xiao, Y. M.; Zhang, X. D. Enhancing mechanical and biological properties of biphasic calcium phosphate ceramics by adding calcium oxide. J. Am. Ceram. Soc. 2021, 104, 548–563.

27

Deng, Y. L.; Liu, M. J.; Chen, X. N.; Wang, M. L.; Li, X. F.; Xiao, Y. M.; Zhang, X. D. Enhanced osteoinductivity of porous biphasic calcium phosphate ceramic beads with high content of strontium-incorporated calcium-deficient hydroxyapatite. J. Mater. Chem. B 2018, 6, 6572–6584.

28

Li, X. F.; Wang, M. L.; Deng, Y. L.; Chen, X. N.; Xiao, Y. M.; Zhang, X. D. Fabrication and properties of Ca-P bioceramic spherical granules with interconnected porous structure. ACS Biomater. Sci. Eng. 2017, 3, 1557–1566.

29

Chen, X. N.; Wang, M. L.; Chen, F. Y.; Wang, J.; Li, X. F.; Liang, J.; Fan, Y. J.; Xiao, Y. M.; Zhang, X. D. Correlations between macrophage polarization and osteoinduction of porous calcium phosphate ceramics. Acta Biomater. 2020, 103, 318–332.

30

Li, X. F.; Song, T.; Chen, X. N.; Wang, M. L.; Yang, X.; Xiao, Y. M.; Zhang, X. D. Osteoinductivity of porous biphasic calcium phosphate ceramic spheres with nanocrystalline and their efficacy in guiding bone regeneration. ACS Appl. Mater. Interfaces 2019, 11, 3722–3736.

31

Feng, C.; Wu, Y. H.; Cao, Q. L.; Li, X. F.; Zhu, X. D.; Zhang, X. D. Effect of hydrothermal media on the in-situ whisker growth on biphasic calcium phosphate ceramics. Int. J. Nanomed. 2021, 16, 147–159.

32

Wang, J.; Chen, X. N.; Guo, B.; Yang, X.; Zhou, Y.; Zhu, X. D.; Zhang, K.; Fan, Y. J.; Tu, C. Q.; Zhang, X. D. A serum protein adsorption profile on BCP ceramics and influence of the elevated adsorption of adhesive proteins on the behaviour of MSCs. J. Mater. Chem. B 2018, 6, 7383–7395.

33

Battiston, K. G.; Labow, R. S.; Santerre, J. P. Protein binding mediation of biomaterial-dependent monocyte activation on a degradable polar hydrophobic ionic polyurethane. Biomaterials 2012, 33, 8316–8328.

34

Wang, J.; Su, Y. Y.; Xu, L. Z.; Li, D. Y. Micro-patterned surface construction on BCP ceramics and the regulation on inflammation-involved osteogenic differentiation. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 116, 111220.

35

McWhorter, F. Y.; Wang, T. T.; Nguyen, P.; Chung, T.; Liu, W. F. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. USA 2013, 110, 17253–17258.

36

Chen, Z. T.; Klein, T.; Murray, R. Z.; Crawford, R.; Chang, J.; Wu, C. T.; Xiao, Y. Osteoimmunomodulation for the development of advanced bone biomaterials. Mater. Today 2016, 19, 304–321.

37

Rostam, H. M.; Reynolds, P. M.; Alexander, M. R.; Gadegaard, N.; Ghaemmaghami, A. M. Image based machine learning for identification of macrophage subsets. Sci. Rep. 2017, 7, 3521.

38

Shayan, M.; Padmanabhan, J.; Morris, A. H.; Cheung, B.; Smith, R.; Schroers, J.; Kyriakides, T. R. Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization. Acta Biomater. 2018, 75, 427–438.

39

Piedra-Quintero, Z. L.; Serrano, C.; Villegas-Sepúlveda, N.; Maravillas-Montero, J. L.; Romero-Ramírez, S.; Shibayama, M.; Medina-Contreras, O.; Nava, P.; Santos-Argumedo, L. Myosin 1F regulates M1-polarization by stimulating intercellular adhesion in macrophages. Front. Immunol. 2019, 9, 3118.

40

Siebers, M. C.; Ter Brugge, P. J.; Walboomers, X. F.; Jansen, J. A. Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials 2005, 26, 137–146.

41

Shekaran, A.; García, A. J. Extracellular matrix-mimetic adhesive biomaterials for bone repair. J. Biomed. Mater. Res. Part A 2011, 96, 261–272.

42

St-Pierre, J.; Moreau, F.; Cornick, S.; Quach, J.; Begum, S.; Fernandez, L. A.; Gorman, H.; Chadee, K. The macrophage cytoskeleton acts as a contact sensor upon interaction with entamoeba histolytica to trigger IL-1β secretion. PLoS Pathog. 2017, 13, e1006592.

43

Bartneck, M.; Schulte, V. A.; Paul, N. E.; Diez, M.; Lensen, M. C.; Zwadlo-Klarwasser, G. Induction of specific macrophage subtypes by defined micro-patterned structures. Acta Biomater. 2010, 6, 3864–3872.

44

Freytes, D. O.; Kang, J. W.; Marcos-Campos, I.; Vunjak-Novakovic, G. Macrophages modulate the viability and growth of human mesenchymal stem cells. J. Cell. Biochem. 2013, 114, 220–229.

45

Tang, Z. R.; Wang, Z.; Qing, F. Z.; Ni, Y. L.; Fan, Y. J.; Tan, Y. F.; Zhang, X. D. Bone morphogenetic protein smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics. J Biomed. Mater. Res. Part A 2015, 103, 1001–1010.

46

Li, S. N.; Wu, J. F. TGF-β/SMAD signaling regulation of mesenchymal stem cells in adipocyte commitment. Stem Cell. Res. Ther. 2020, 11, 41.

47

Shi, Y.; Pan, X. L.; Xu, M.; Liu, H. R.; Xu, H. Z.; He, M. X. The role of Smad1/5 in mantle immunity of the pearl oysterPinctada fucata martensii. Fish Shellfish Immunol. 2021, 113, 208–215.

48

Zhang, H.; Zhan, Y. Y.; Zhang, Y.; Yuan, G. H.; Yang, G. B. Dual roles of TGF-β signaling in the regulation of dental epithelial cell proliferation. J. Mol. Histol. 2021, 52, 77–86.

49

Hernandez, A. L.; Young, C. D.; Bian, L.; Weigel, K.; Nolan, K.; Frederick, B.; Han, G. W.; He, G. T.; Trahan, G. D.; Rudolph, M. C. et al. PARP inhibition enhances radiotherapy of SMAD4-deficient human head and neck squamous cell carcinomas in experimental models. Clin. Cancer Res. 2020, 26, 3058–3070.

50

Wang, J.; Wang, M. L.; Chen, F. Y.; Wei, Y. H.; Chen, X. N.; Zhou, Y.; Yang, X.; Zhu, X. D.; Tu, C. Q.; Zhang, X. D. Nano-hydroxyapatite coating promotes porous calcium phosphate ceramic-induced osteogenesis via BMP/Smad signaling pathway. Int. J. Nanomedicine 2019, 14, 7987–8000.

51

Alexander, K. A.; Chang, M. K.; Maylin, E. R.; Kohler, T.; Müeller, R.; Wu, A. C.; Van Rooijen, N.; Sweet, M. J.; Hume, D. A.; Raggatt, L. J. et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J. Bone Miner. Res. 2011, 26, 1517–1532.

52

Martino, M. M.; Maruyama, K.; Kuhn, G. A.; Satoh, T.; Takeuchi, O.; Müeller, R.; Akira, S. Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration. Nat. Commun. 2016, 7, 11051.

53

Gerstenfeld, L. C.; Cullinane, D. M.; Barnes, G. L.; Graves, D. T.; Einhorn, T. A. Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation. J. Cell. Biochem. 2003, 88, 873–884.

54

Dimitriou, R.; Tsiridis, E.; Giannoudis, P. V. Current concepts of molecular aspects of bone healing. Injury 2005, 36, 1392–1404.

55

Cheng, N. C.; Estes, B. T.; Awad, H. A.; Guilak, F. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tiss. Eng. Part A 2009, 15, 231–241.

56

Mahon, O. R.; Browe, D. C.; Gonzalez-Fernandez, T.; Pitacco, P.; Whelan, I. T.; Von Euw, S.; Hobbs, C.; Nicolosi, V.; Cunningham, K. T.; Mills, K. H. G. et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials 2020, 239, 119833.

57

Heredia, J. E.; Mukundan, L.; Chen, F. M.; Mueller, A. A.; Deo, R. C.; Locksley, R. M.; Rando, T. A.; Chawla, A. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 2013, 153, 376–388.

58

Sadtler, K.; Estrellas, K.; Allen, B. W.; Wolf, M. T.; Fan, H. N.; Tam, A. J.; Patel, C. H.; Luber, B. S.; Wang, H.; Wagner, K. R. et al. Developing a pro-regenerative biomaterial scaffold micro-environment requires T helper 2 cells. Science 2016, 352, 366–370.

Nano Research
Pages 9169-9182
Cite this article:
Wu J, Feng C, Wang M, et al. Whisker of biphasic calcium phosphate ceramics: Osteo-immunomodulatory behaviors. Nano Research, 2022, 15(10): 9169-9182. https://doi.org/10.1007/s12274-022-4591-0
Topics:

1181

Views

10

Crossref

10

Web of Science

10

Scopus

1

CSCD

Altmetrics

Received: 11 March 2022
Revised: 21 May 2022
Accepted: 28 May 2022
Published: 23 July 2022
© Tsinghua University Press 2022
Return